Answer:
B) The term "inert" was dropped because it no longer described all the group 8A elements.
Explanation:
Inert elements in chemistry simply refers to elements that are chemically inactive and are not expected to form any compounds. this is the general belief for the group 8 elements as they all have complete duplet/octet configurations (and ideally, they ought to be very stable with no tendency to form compounds by participating in the loss and gain of electrons). However the discovery of compounds like xenon tetrafluoride (XeF4) proved this to be wrong.
Again, the reason the term - inert gses was droppedis beacause this term is not strictly accurate because several of them do take part in chemical reactions.
After dropping the term - Inert gases, they are now referred to as noble gases.
Answer:
you are not posted question
Answer:
The answer to your question is below
Explanation:
Polyatomic ions are ions composed for more than 1 atom. There are polyanions and polycations.
Polyanions have a negative charge and polycations have a positive charge.
Examples
Polyanions Polycations
acetate CH₃COO⁻ ammonium NH₄⁺¹
bromate BrO₃⁻
chlorate ClO₃⁻
hydroxide OH⁻
nitrate NO₃⁻
nitrite NO₂⁻
sulfate SO₄⁻²
phosphate PO₄⁻³
permanganate MnO₄⁻
We write parentheses before or after a polyatomic ion to emphasize that the oxidation number of the atom which interacts with it affects all the atoms that form part of the polyatomic ion.
The answer is d
If wrong don’t delete just tell me
Answer:
3 > 2> 1
Explanation:
Aromatic compounds undergo electrophilic substitution reaction which passes through a positively charged intermediate to yield the product.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene molecule depending on the nature of the substituent.
Certain substituents increase the ease of reaction of benzene towards aromatic substitution.
If we look at the compounds closely, we will notice that toluene reacts readily with CH3Cl / AlCl3. This is because, the methyl group is electron donating hence it stabilizes the positively charged intermediate produced in the reaction.
Carbonyl compounds are electron withdrawing substituents hence they decrease the magnitude of the positive charge and hence decrease the rate of electrophilic aromatic substitution.