The gas is confined in 3.0 L container ( rigid container) ⇒ the volume remains constant when the temperature is increased from from 27oC to 77oC and therefore V1=V2 .
<h2>
Hope it helps you please mark as brainlist</h2>
Answer: The mass percentage of
is 5.86%
Explanation:
To calculate the mass percentage of
in the sample it is necessary to know the mass of the solute (
in this case), and the mass of the solution (pesticide sample, whose mass is explicit in the letter of the problem).
To calculate the mass of the solute, we must take the mass of the
precipitate. We can establish a relation between the mass of
and
using the stoichiometry of the compounds:

Since for every mole of Tl in
there are two moles of Tl in
, we have:

Using the molar mass of
we have:

Finally, we can use the mass percentage formula:

Capillary action is defined as the ability of a liquid to go up a narrow space without the help or opposition of external forces. One of the most important factors affecting capillary action is the intermolecular forces within a substance. The higher the IMF, the greater the capillary action. The H-bonding in water gives it greater IMF than acetone, so water has greater capillary action.
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the
substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
Density = mass / volume
The density of water = 0.997 g/mL
<span>Hence mass of 1.25 L (1250 mL) of water = 0.997 g/mL x 1250 mL</span>
<span> = 1246.25 g</span>
Specific heat capacity of water = 4.186 J<span>/ g °C.</span>
Let's assume that there is no heat loss to the surrounding and the final temperature is T.
By applying the equation,
5430 J = 1246.25 g x 4.186 J/ g °C x (T - 23) °C
(T - 23) °C = 5430 J / 1246.25 g x 4.186 J/ g °C
(T - 23) °C = 1.04 °C
T = 1.04 °C + 23 °C
T = 24.04 °C
Hence, the final temperature of the water is 24.04 °C.
Answer:
The new pressure is 3850 torr.
Explanation:
The relation between volume and pressure is inverse as per Boyle's law. Its mathematical form is given by :

Here,



Let
is the new pressure. So using Boyle's law we get :

or

So, the new pressure is 3850 torr.