1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
2 years ago
9

A celebrated Mark Twain story has motivated contestants in the Calaveras County Jumping Frog Jubilee, where frog jumps as long a

s 2.20 m have been recorded. If a frog jumps 2.20 m and the launch angle is 36.5°, find the frog's launch speed and the time the frog spends in the air. Ignore air resistance.
(a)the frog's launch speed (in m/s)

(b)the time the frog spends in the air (in s)
Physics
1 answer:
IrinaK [193]2 years ago
4 0

The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.

To find the answer, we need to know about the time of flight and range of projectile motion.

<h3>What's the expression of range of a projectile motion?</h3>
  • Range = U²× sin(2θ)/g
  • U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
  • U=√{Range×g/sin(2θ)}
  • Here, range= 2.20m, = 36.5°
  • U= √{2.20×9.8/sin(73)}

U= √{2.20×9.8/sin(73)} = 22.5m/s

<h3>What's the expression of time of flight in projectile motion?</h3>
  • Time of flight= (2×U×sinθ)/g
  • So, T= (2×22.5×sin36.5°)/9.8

= 2.73 s

Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.

Learn more about the range and time period of projectile motion here:

brainly.com/question/24136952

#SPJ1

You might be interested in
How much potential energy does a 50-N box have when lifted at a height of 1.5M?
nikitadnepr [17]

The correct answer is: Option (A) 75 J

Explanation:

First, be careful with the units here. As you can see it is mentioned that there is a 50N box. It means that the weight (<em>mg</em>) of the box is given as the unit is <em>Newton</em>, not its mass (which is in kg).

As,

Potential-energy = mass * acceleration-due-to-gravity * height

PE = m*g*h --- (A)


In equation (A), mg is actually the weight of the box, which is given.

mg = 50N

h = height = 1.5m

Plug the values in equation (A):

PE = 50 * 1.5  = <em>75 J (Option A)</em>

3 0
3 years ago
Why would an egg break immediately when it hits the ground?
Elza [17]

As an egg falls towards the floor, it begins to travel faster and faster. When it slams into the floor, the egg is stopped almost immediately. This force of the floor against the eggshell is too large, so it breaks.
6 0
3 years ago
Read 2 more answers
What describes why voters xhoose political canidates?
Alexus [3.1K]
The voters political opinions and what they think what is right and wrong.
4 0
3 years ago
12) Photosynthesis is a chemical reaction where carbon dioxide and water react to form glucose (C6H12O6) and oxygen gas. Which r
marusya05 [52]
6CO2 + 6H2O → C6H12O6 + 6O2
4 0
3 years ago
Read 2 more answers
A uniformly charged, one-dimensional rod of length L has total positive charge Q. Itsleft end is located at x = ????L and its ri
GREYUIT [131]

Answer:

|\vec{F}| = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}(\ln(L+x_0)-\ln(x_0))

Explanation:

The force on the point charge q exerted by the rod can be found by Coulomb's Law.

\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^2}\^r

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.

In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.

We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.

Applying Coulomb's Law:

d\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{qdq}{x + x_0}(\^x)

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.

Now, we have to write 'dq' in term of the known quantities.

\frac{Q}{L} = \frac{dq}{dx}\\dq = \frac{Qdx}{L}

Now, substitute this into 'dF':

d\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{qQdx}{L(x+x_0)}(\^x)

Now we can integrate dF over the rod.

\vec{F} = \int{d\vec{F}} = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}\int\limits^{L}_0 {\frac{1}{x+x_0}} \, dx = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}(\ln(L+x_0)-\ln(x_0))(\^x)

4 0
3 years ago
Other questions:
  • If you push hard enough to make a scale read 9 pounds, that is about 40 Newtons. So Newtons are a smaller unit... True or False
    8·1 answer
  • 3. A clown rides a small car at a speed of
    15·1 answer
  • As air becomes warmer, it
    10·2 answers
  • Problem 21-40a:
    7·1 answer
  • WILL GIVE 5 STARS!!!! HELP ASAP!!!
    14·1 answer
  • Find the volume of cuboid of side 4cm. Convert it in SI form​
    8·1 answer
  • HURRRRRRRRRRRYYYYYYYYYYYYYYYYYYYYY
    11·1 answer
  • Look at the pic please
    8·1 answer
  • What is a electric curcit
    5·2 answers
  • Which of these is a property of an electromagnetic wave? A)magnetic and electric fields oscillate perpendicular to each other bu
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!