Assuming that the gas acts like an ideal gas, we can
calculate for the final volume using the ideal gas law:
PV = nRT
Where P = pressure, V = volume, n = number of moles, R = gas
constant, and T = temperature
Assuming that P, n, and R are constant throughout the
process, we can define another constant K:
V / T = K where
K = nR / P
Equating the initial and final states:
Vi / Ti = Vf / Tf
Substituting the given values:
11.5 cm^3 / 415 K = Vf / 200 K
Vf = 5.54 cm^3
Answer:
most likely climate changes and or mass extinction
Explanation:
Answer:
Si tú puedes 1-2-3-4-5-6-7-8-9-10 eso debes de ser más bien dicho sacaran Club Ojalá que te ayude Chau
Explanation:
de Ojalá que te ayude No te olvides de sacar todas las preguntas esas lo que tú dijiste y si tú promoción 123 saquen globo que quieras tú
The aqueous product conducts electricity while the solid does not. Ionic solids do not conduct electricity, but ions dissolved in solution do.
The chemical name of the base is calcium hydroxide.
Increasing the temperature of the system would increase the rate of the reaction.
<span>STP means standard temperature
and pressure at 0°C (273K) and 1 atm (atmosphere). The density of the unknown
gas is 0.63 gram per liter. The deal gas equation is PV = nRT. The n is the
numer of moles and can be represented as mass of the gas, m, divided by the
molar mass, c. so we have,</span>
PV = nRT
PV = (m/c)RT
Since the density is d = m/V
Pc = (m/V)RT
Pc = dRT
c = drT/P
substitute the values into the equation,
c = [(0.63g/L)(0.08206
L-atm/mol-K)(273K)]/(1atm)
<u>c = 14.11 g/mol</u>