The question is incomplete, here is the complete question:
Calculate the pH of a solution prepared by dissolving 0.370 mol of formic acid (HCO₂H) and 0.230 mol of sodium formate (NaCO₂H) in water sufficient to yield 1.00 L of solution. The Ka of formic acid is 1.77 × 10⁻⁴
a) 2.099
b) 10.463
c) 3.546
d) 2.307
e) 3.952
<u>Answer:</u> The pH of the solution is 3.546
<u>Explanation:</u>
We are given:
Moles of formic acid = 0.370 moles
Moles of sodium formate = 0.230 moles
Volume of solution = 1 L
To calculate the molarity of solution, we use the equation:

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[HCOONa]}{[HCOOH]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5BHCOONa%5D%7D%7B%5BHCOOH%5D%7D%29)
= negative logarithm of acid dissociation constant of formic acid = 3.75
![[HCOOH]=\frac{0.370}{1}](https://tex.z-dn.net/?f=%5BHCOOH%5D%3D%5Cfrac%7B0.370%7D%7B1%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of the solution is 3.546
D.) It cannot be broken down into a simple substance through chemical means...
The mass of NaCl sample has been 24.3 g. Thus, option A is correct.
The heat of fusion has been the amount of heat required to convert 1 mole of substance into solid to liquid state.
The heat required has been given as:

<h3>Computation for the mass of NaCl</h3>
The given solution has heat of fusion, 
The heat required to melt the sample has been, 
Substituting the values for the mass of NaCl

The mass of NaCl sample has been 24.3 g. Thus, option A is correct.
Learn more about heat of fusion, here:
brainly.com/question/87248
Answer:
569K
Explanation:
Q = 3.5kJ = 3500J
mass = 28.2g
∅1 = 20°C = 20 + 273 = 293K
∅2 = x
c = 0.449
Q = mc∆∅
3500 = 28.2×0.449×∆∅
3500 = 12.6618×∆∅
∆∅ = 3500/12.6618
∆∅ = 276.4220
∅2 - ∅1 = 276.4220
∅2 = 276.4220 + ∅1
∅2 = 276.4220 + 293
∅2 = 569.4220K
∅2 = 569K