Answer:
Anhydrous sodium carbonate is stable to heat and does not decompose even when it is heated to redness. This is because sodium carbonate salt on heating with acids react to release carbon dioxide.
Methane is the compound CH4, and burning it uses the reaction:
CH4 + O2 -> CO2 + H2O, which is rather exothermic. To find the heat released by burning a certain amount of the substance, you should look at the bond enthalpy of each compound, and then compare the values before and after the reaction. In methane, there are 4 C-H bonds, which have bond energy of 416 kj/mol, resulting in a total bond energy of 1664 kj/mol. O2 is 494 kj/mol. Therefore we have a total of 2080 kj/mol on the left side. On the right side we have CO2, which has 2 C=O bonds, each at 799 kj/mol each, resulting in 1598 kj/mol, and H2O has 2 O-H bonds, at 459kj/mol each, resulting in a total of 2516 kj/mol on the right hand side. Now, this may be confusing because the left hand side seems to have less heat than the right, but you just need to remember: making minus breaking, which results in a total change of 436kj/mol heat evolved.
Now it is a simple matter of find the mols of CH4 reacted, using n=m/mr.
n = 9.5/16.042 = 0.592195 mol
Therefore, if we reacted 0.592195 mol, and we produced 436 kj for one mol, the total amount of energy evolved was 436*<span>0.592195 kj, or 258.197 kj.</span>
When the balanced reaction equation is:
2HCl(aq) + Ca(OH)2(aq) → CaCl2(aq) + 2H2O(l)
from the balanced equation, we can get the molar ratio between HCl & Ca(OH)2
2:1
∴ the volume of Ca(OH)2 = 15.8 L HCl * 1.51 m HCl * (1mol Ca(OH)2/ 2mol HCl) * (1L ca(OH)2/0.585 mol Ca(OH)2
= 20.4 L
Answer:
V = 0.63 L
Explanation:
To solve this problem, we need to use the Charle's law which is a law that involves temperature and volume, assuming we have a constant pressure. The problem do not state that the pressure is being altered, so we can safely assume that the pressure is constant (Maybe 1 atm).
Now, as the pressure is constant, the Charle's law is the following:
V₁ / T₁ = V₂ / T₂ (1) V is volume in Liter, and T is temperature in Kelvin.
Using this law with the given data, we solve for V₂:
V₂ = V₁T₂ / T₁
Before we use this expression, let's convert the temperatures to Kelvin:
T₁ = 19 + 273 = 292 K
T₂ = 250 + 273 = 523 K
Now, let's calculate the volume of the balloon:
V₂ = 0.35 * 523 / 292
<h2>
V₂ = 0.63 L</h2>