Answer:
<em></em>
<em></em>
Explanation:
Roughly 96 percent of the mass of the human body is made up of just four elements: oxygen, carbon, hydrogen and nitrogen, with a lot of that in the form of water. The remaining 4 percent is a sparse sampling of the periodic table of elements
Hope this helps :)
<u>Answer:</u> The products of the reaction will be 
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The general chemical equation for the single displacement reaction follows:

The given chemical equation follows:

Bromine element is more reactive than iodine element. Thus, can easily replace iodine from its chemical reaction.
Hence, the products of the reaction will be 
Question requires a change resulting in an increase in both forward and reverse reactions. Now lets discuss options one by one and see there impact on rate of reactions.
1) <span>A decrease in the concentration of the reactants:
When concentration of reactant is decreased it will shift the equilibrium in Backward direction, so resulting in increasing the backward reaction and decreasing the forward direction. Hence, this option is incorrect.
2) </span><span>A decrease in the surface area of the products:
Greater the surface Area greater is the chances of collision and greater will be the rate of reaction. As the surface area of products is decreased it will not favor the backward reaction. Hence again this statement is incorrect according to given statement.
3) </span><span>An increase in the temperature of the system:
An increase in temperature will shift the reaction in endothermic side. Hence, if the reaction is endothermic, an increase in temperature will increase the rate of forward direction or if the reaction is exothermic it will increase the rate of reverse direction. Hence, this option is correct according to given statement.
4) </span><span>An increase in the activation energy of the forward reaction:
An increase in Activation energy will decrease the rate of reaction, either it is forward or reverse. So this is incorrect.
Result:
Hence, the correct answer is,"</span>An increase in the temperature of the system".
Answer: The kilograms of water must evaporate from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.
Explanation:
According to the ratio and proportion:

where,
= concentration of ist solution = 25%
= mass of ist solution = 8 kg
= concentration of second solution = 40%
= mass of second solution = ? kg


Thus the final solution must have a mass of 5 kg , i.e (8-5)= 3 kg of mass must be evaporated.
Therefore, the mass that must be evaporated from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.