<span>Neutrons emit residual strong force without electric charge. This is why they have a stabilization effect. It is an interplay between the two particles which stabilize the nucleus.</span> so the neutrons play a big role in the stability process.
<u>Answer:</u> The rate constant for the given reaction is 
<u>Explanation:</u>
For the given chemical equation:

We are given that the above equation is undergoing first order kinetics.
The equation used to calculate rate constant from given half life for first order kinetics:

The rate constant is independent of the initial concentration for first order kinetics.
We are given:
= half life of the reaction = 
Putting values in above equation, we get:

Hence, the rate constant for the given reaction is 
For the titration we use the equation,
M₁V₁ = M₂V₂
where M is molarity and V is volume. Substituting the known values,
(0.15 M)(43.2 mL) = (2)(M₂)(20.5 mL)
We multiply the right term by 2 because of the number of H+ in H2SO4. Calculating for M₂ will give us 0.158 M. Thus, the answer is approximately 0.16M.
Find the mass of C in the 2.657 g CO2:
(2.657 g CO2) / (44.01 g/mol) = 0.06037 mol CO2
Since each mole of CO2 also has 1 mole of C, this is equivalent to 0.06037 mol C.
Find the mass of H in the 1.089 g H2O:
(1.089 g H2O) / (18.02 g/mol) = 0.06043 mol H2O
Since 1 mol H2O has 2 mol H, this is equivalent to (0.06043)*2 = 0.1209 mol H.
Taking the ratio of H to C: 0.1209 / 0.06037 = 2.002 ~ 2
Therefore, the empirical formula of isobutylene is CH2.