Answer:
The independent variable is what you change in the experiment.
Explanation:
The independent determines the dependent variable.
Answer:
The solubility of the gaseous solute decreases
Explanation:
As we know, pressure decreases with altitude. This means that, at higher altitudes, the pressure is much lower than it is at sea level.
The solubility of a gas increases with increase in pressure and decreases with decrease in pressure.
Hence, in Denver, Colorado where the elevation is about 5,280 feet above sea level, a gaseous solute is less soluble than it is at sea level due to the lower pressure at such high altitude.
Answer:
Cytoplasm.
Explanation:
Please mark as Brainliest! :)
Answer:
the answer is C4H10 I hope I helped
Answer:

Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:

We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
- moles of solute = 0.14 mol KCl
- molarity= 1.8 mol KCl/ L
- liters of solution=x
Substitute these values/variables into the formula.

We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.



Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.


The units of moles of potassium chloride cancel.


The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.

There are approximately <u>0.078 liters of solution.</u>