Yes we can talk :))
other than that have a good day!
For i: 33mL
For ii: 87-88mL
For iii:22.3mL
Answer:
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
Explanation:
The balanced oxidation half equation is;
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
A redox reaction is actually an acronym for oxidation-reducation reaction. Since the both reactions are complementary, there can't be oxidation without reduction and there can't be reduction without oxidation.
The main characteristic of redox reactions is that electrons are transferred in the process. The number of electrons transferred is usually deduced from the balanced reaction equation. For this reaction, the balanced overall reaction equation is;
Cr2O7^2–(aq) + 6Fe^2+(aq) +14H^+(aq)→ 2Cr^3+(aq) + 6Fe^3+ (aq) + 7H2O(l)
It is clear from the equation above that six electrons were transferred. Thus six Fe^2+ ions lost one electron each in the oxidation half equation as shown in the balanced oxidation half equation above.
The fraction of acetic acid that is dissociated is 0.18
Why?
The chemical equation for the dissociation of acetic acid (HAc) is the following:
HAc(aq) + H₂O(l) ⇄ H₃O⁺(aq) + Ac⁻(aq)
To find the fraction of acetic acid that is in the dissociated form (f), we apply the following equation (Ka for acetic acid is 1.76*10⁻⁵). This equation comes from solving the equation of the equilibrium constant for the dissociated fraction of HAc:

Have a nice day!
#LearnwithBrainly
The relative molecular mass of the gas : 64 g/mol
<h3>Further explanation</h3>
Given
Helium rate = 4x an unknown gas
Required
The relative molecular mass of the gas
Solution
Graham's Law

r₁=4 x r₂
r₁ = Helium rate
r₂ = unknown gas rate
M₁= relative molecular mass of Helium = 4 g/mol
M₂ = relative molecular mass of the gas
Input the value :
