High pressures are necessary to create such reaction so that the particles will be able to overcome electrostatic repulsion. The particles that make up a particular atom are covered by shells of energy that react to different impulses like pressure. When particles are exposed to extreme environmental pressure it has the tendency to split its particles and undergo nuclear fusion successfully.
Complete Question:
A chemist prepares a solution of silver (I) perchlorate (AgCIO4) by measuring out 134.g of silver (I) perchlorate into a 50.ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the silver (I) perchlorate solution. Round your answer to 2 significant digits.
Answer:
13 mol/L
Explanation:
The concentration in mol/L is the molarity of the solution and indicates how much moles have in 1 L of it. So, the molarity (M) is the number of moles (n) divided by the volume (V) in L:
M = n/V
The number of moles is the mass (m) divided by the molar mass (MM). The molar mass of silver(I) perchlorate is 207.319 g/mol, so:
n = 134/207.319
n = 0.646 mol
So, for a volume of 50 mL (0.05 L), the concentration is:
M = 0.646/0.05
M = 12.92 mol/L
Rounded to 2 significant digits, M = 13 mol/L
Answer:
27.60 g urea
Explanation:
The <em>freezing-point depression</em> is expressed by the formula:
In this case,
- ΔT = 5.6 - (-0.9) = 6.5 °C
m is the molality of the urea solution in X (mol urea/kg of X)
First we<u> calculate the molality</u>:
- 6.5 °C = 7.78 °C kg·mol⁻¹ * m
Now we<u> calculate the moles of ure</u>a that were dissolved:
550 g X ⇒ 550 / 1000 = 0.550 kg X
- 0.84 m = mol Urea / 0.550 kg X
Finally we <u>calculate the mass of urea</u>, using its molecular weight:
- 0.46 mol * 60.06 g/mol = 27.60 g urea
Answer:
The new volume will be 42, 7 L.
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. The conditions STP are: 1 atm of pressure and 273 K of temperature.
P1xV1/T1 =P2xV2/T2
1 atmx 22,4 L/273K = 0,5atmx V2/260K
V2=((1 atmx 22,4 L/273K )x 260K)/0,5 atm= 42, 67L