Answer:
8.8g of Al are necessaries
Explanation:
Based on the reaction, 2 moles of Al are required to produce 3 moles of hydrogen gas.
To solve this question we must find the moles of H2 in 11L at STP using PV = nRT. With these moles we can find the moles of Al required and its mass as follows:
<em>Moles H2:</em>
PV = nRT; PV/RT = n
<em>Where P is pressure = 1atm at STP; V is volume = 11L; R is gas constant = 0.082atmL/molK and T is absolute temperature = 273.15K at STP</em>
Replacing:
1atm*11L/0.082atmL/molK*273.15K = n
n = 0.491 moles of H2 must be produced
<em />
<em>Moles Al:</em>
0.491 moles of H2 * (2mol Al / 3mol H2) = 0.327moles of Al are required
<em />
<em>Mass Al -Molar mass: 26.98g/mol-:</em>
0.327moles of Al * (26.98g / mol) = 8.8g of Al are necessaries
Answer:
Your answer is triglycerides. Hope this helps.
Answer:
a. The second run will be faster.
d. The second run has twice the surface area.
Explanation:
The rate of a reaction is proportional to the surface area of a catalyst. Given the volume (V) of a sphere, we can find its surface area (A) using the following expression.

The area of the 10.0 cm³-sphere is:

The area of each 1.25 cm³-sphere is:

The total area of the 8 1.25cm³-spheres is 8 × 5.61 cm² = 44.9 cm²
The ratio of 8 1.25cm³-sphere to 10.0 cm³-sphere is 44.9 cm²/22.4 cm² = 2.00
Since the surface area is doubled, the second run will be faster.
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
Answer:
We normally separate unreacted hydrogen from ammonia (product) in Haber process. The reaction mixture contains some ammonia, plus a lot of unreacted hydrogen and nitrogen. The mixture is cooled and compressed, causing the ammonia gas to condense into a liquid.