Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
The correct answer is D) The closet point in the Moon's orbit to Earth
This does not refer to the Moon only. It refers to any satellite and to its closest point to Earth.
Answer:
Newtons first law
Explanation:
object in rest stays at rest
object in motion stays in motion
Answer:
each resistor draws 1/3 of an amp or 0.33333 amps
Explanation:
V = I * R
V = 10 volts
R = 30 ohms
10 = I * 30 Divide by 30
10/30 = I
I = 0.33333
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,

