Answer:
Their bodies don't conduct electricity like we do.
Explanation:
Answer:
Zeros that follow non-zero numbers and are also to the right of a decimal point are significant.
Explanation:
For example:
0.300 has 3 significant figures.
5.400 has 4 significant figures.
Explanation:
Let magnitude of the two forces be x and y.
Resultant at right angle R1= √15N) and at
60 degrees be R2= √18N.
Now, R1 = √(x² + y²) = √15,
R2= √(x² + y² +2xycos50) = √18.
So x² + y² = 15,
and x² + y² + 1.29xy = 18,
therefore 1.29xy = 3,
y = 3/1.29x.
y = 2.33/x
Now, x2 + (2.33/x)2 = 15,
x² + 5.45/x² = 15
multiply through by x²
x⁴ + 5.45 = 15x²
x⁴ - 15x2 + 5.45 = 0
Now find the roots of the equation, and later y. The two values of x will correspond to the
magnitudes of the two vectors.
Good luck
The force constant is 2.145 N/m.
<h3>What is spring constant?</h3>
- The spring constant is the force required to stretch or compress a spring divided by the distance traveled by the spring. It is used to determine whether a spring is stable or unstable.
- K is the proportionality constant, also known as the 'spring constant.' Hooke's law (F = -kx) specifies stiffness and strength via the k variable. The greater the value of k, the greater the force required to stretch an object to a given length.
Using the relation;
T = 2π√m/k
T = time period = 0.45 s
m = mass of object in kilograms = 0.011kg
k = spring constant
To find k based on the formula,
k = 4 × (3.142)^2 × 0.011 / (0.45 )^2
k = 2.145 N/m
Therefore the force constant is 2.145 N/m.
To learn more about force refer to :
brainly.com/question/12785175
#SPJ4
Answer:
elastic collision
An elastic collision occurs when the two objects "bounce" apart when they collide. Two rubber balls are a good example. In an elastic collision, both momentum and kinetic energy are conserved. Almost no energy is lost to sound, heat, or deformation.
I hope it's helpful!