Answer:
The gas was Hexane
Explanation:
taking the diference between the mass of the flask and the final mass qe can calculate the mass of liquid injected (assuming none escaped the flask):

with the volume of the flask we can get the density of the gas at the indicated pressure and temperature:

From the ideal gases law we have that the density can be calculated as:

Where R is the ideal gases constant = , and M the molecular weight of the fluid. Solving for M:


Note that the temperature is computed in Kelvin T= 18+273=291K
The gas with the closer molar mass is Hexane
The initial velocity of the bird before the gust of wind : <u>4 m/s</u>
<h3>Further explanation</h3>
An equation of uniformly accelerated motion

v = vo + at
Vt² = vo² + 2a (x-xo)
x = distance on t
vo/vi = initial speed
vt/vf = speed on t /final speed
a = acceleration
Acceleration is a change in speed within a certain time interval
a = Δv /Δ t

Let complete the task :
A bird is flying to the right when a gust of wind causes the bird to accelerate leftward at 0.5 m/s² for 3 s. After the wind stops, the bird is flying to the right with a velocity of 2.5 m/s.
Assuming the acceleration from the wind is constant, what was the initial velocity of the bird before the gust of wind?
we can use formula :
vf = vi + a.t
vf = final velocity = 2.5 m/s
vi = asked
a = - 0.5 m/s²(leftward=negative)
t = 3 s
then :

<h3>Learn more</h3>
The car reach the end of the road
brainly.com/question/13750982
Keywords: uniformly accelerated motion, distance, velocity, acceleration
#LearnwithBrainly
Answer:
The first law of thermodynamics states that the change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system. In equation form, the first law of thermodynamics is ΔU = Q − W.
The internal energy of ideal gas is U = cV The change in internal energy for ideal gas is therefore ∆U = cV ∆T, where cV is specific heat (at constant volume), and ∆T is change in tem- perature.
Explanation:
ihopeithelps
A = 1*100 = 100 Ns
b = 10 * 12 = 120 Ns
c = 0.5*1000 = 500 Ns
d = 100 * 2 = 200 Ns
a has least momentum