Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Answer:
259.62521 seconds
Explanation:
= Mass of astronaut = 87 kg
= Mass of wrench = 0.57 kg
= Velocity of astronaut
= Velocity of wrench = 22.4 m/s
Here, the linear momentum is conserved

Time = Distance / Speed

The time taken to reach the ship is 259.62521 seconds
Answer:
Membrane potential
Explanation:
Membrane potential is describes the difference in electrical charge across a membrane.
The difference in potential between exterior and interior of the biological cell is known as Membrane potential.Generally it is denoted by millivolts like mV and varies from -80 V to -40 V.
So the answer is Membrane potential
Answer:
15
Explanation:
mass, M = 5Kg
horizontal force, F_h = 40N
acceleration, a =5 m/s^2
frictional force, F_f =?
net force = ma
net force = F_h - F_f = 40N - F_f
40 - F_f = 5 x 5
- F_f = 25 - 40
multiply both side by -1
F_f = 40 - 25 = 15
the frictional force is 15N
Correct order, from lowest potential energy to highest potential energy:
E - C - D - B - A
Explanation:
The gravitational potential energy of the car is given by:

where
m is the car's mass
g is the gravitational acceleration
h is the height of the car relative to the ground
In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.