Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.
Answer:
The Ideal Gas Law cannot be applied to liquids. The Ideal Gas Law is #PV = nRT#. That implies that #V# is a variable. But we know that a liquid has a constant volume, so the Ideal <u><em>Gas Law cannot apply to a liquid.</em></u>
Explanation:
this is my awnser soory if it was a multiple choice question plz mark brainliest
Answer:
1.75M
Explanation:
molarity = number of moles of solute/ number of L of solution =
=0.35 mol/0.2L = 1.75 mol/L = 1.75 M
Answer:
B. halocline
Explanation:
it is a zone in the oceanic water that changes depending on the depth
Hope This Helped Sorry If Wrong
Answer:
Partial pressure of CO₂ is 406.9 mmHg
Explanation:
To solve the question we should apply the concept of the mole fraction.
Mole fraction = Moles of gas / Total moles
We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)
Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles
To determiine the partial pressure of CO₂ we apply
Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P
Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure
We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg