<span>Okay then I would go with choice B since fusion takes place in the sun which is a giant star.</span>
Answer: At equilibrium, the partial pressure of
is 0.0330 atm.
Explanation:
The partial pressure of
is equal to the partial pressure of
. Hence, let us assume that x quantity of
is decomposed and gives x quantity of
and x quantity of
.
Therefore, at equilibrium the species along with their partial pressures are as follows.
At equilibrium: 0.123-x x x
Now, expression for
of this reaction is as follows.
![K_{p} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}\\0.0121 = \frac{x \times x}{(0.123 - x)}\\x = 0.0330](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPCl_%7B3%7D%5D%5BCl_%7B2%7D%5D%7D%7B%5BPCl_%7B5%7D%5D%7D%5C%5C0.0121%20%3D%20%5Cfrac%7Bx%20%5Ctimes%20x%7D%7B%280.123%20-%20x%29%7D%5C%5Cx%20%3D%200.0330)
Thus, we can conclude that at equilibrium, the partial pressure of
is 0.0330 atm.
Agar is used to assist establish an anaerobic environment that promotes nitrate reduction.
Nitrate Reduction test:
- The nitrate in the broth is converted to nitrite by organisms that can produce the nitrate reductase enzyme, which can then be further converted to nitric oxide, nitrous oxide, or nitrogen.
- Anaerobic respiration and denitrification are two processes that can convert nitrate to a variety of compounds.
- While denitrification only reduces nitrate to molecular nitrogen, anaerobic respiration employs nitrate as the bacterium's final electron acceptor, reducing it to a range of chemicals.
- The nitrate reduction test is based on the detection of nitrite and its capacity to produce a red precipitate (prontosil), which is a water-soluble azo dye, when it combines with sulfanilic acid to create a complex (nitrite-sulfanilic acid).
Learn more about the Nitrate reduction test with the help of the given link:
brainly.com/question/11181586
#SPJ4