1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
morpeh [17]
3 years ago
9

Which of these is a possible disadvantage of using wind as a source of

Physics
2 answers:
vitfil [10]3 years ago
4 0

Answer:

D D D D D D D D  D  D D  D  D D  D D  D  D D  D D D D  D  D D D D  D  D D D D DD

Explanation:

gizmo_the_mogwai [7]3 years ago
3 0

Answer:

D. Wind turbines take up a lot of space.

Explanation:

In wind turbines the kinetic energy received by the air molecules is converted into electrical energy by the use of turbines

So here in order to get more kinetic energy from air we need more crossectional area of the wind mill to interact with the air

So here we need the large size of turbines

so this is the main disadvantage of the wind turbines because it needs large area to install the whole setup also the efficiency of this turbine is small so it needs large number of wind mills to setup good output power

so correct answer will be

D. Wind turbines take up a lot of space.

You might be interested in
Goldie Doldfish, a speed swimmer, loves to rece around the parks pond, which is 0.5 miles around. If she can swim around the tra
rosijanka [135]

Answer:

Her average speed is 0.25 miles / hour.

Explanation:

I did 0.5 divided by 2 = 0.25 miles / hour.

<em>Hope this helps! :)</em>


8 0
2 years ago
A 500-g lump of clay is dropped onto a 1-kg cart moving at 60 cm/s. The clay is moving downward at 30 cm/s just before l dith t
viktelen [127]

Answer:

The speed of the cart and clay after the collision is 50 cm/s .

Explanation:

Given :

Mass of lump , m = 500 g = 0.5 kg .

Velocity of lump , v = 30 cm/s .

Mass of cart , M = 1 kg .

Velocity of cart , V = 60 cm/s .

We know by conservation of momentum :

mv+MV=(m+M)v'

Here , v' is the speed of the cart and clay after the collision .

Putting all value in above equation .

We get :

0.5\times 30+1\times 60=(0.5+1)\times v'\\\\v'=\dfrac{15+60}{1.5}\\\\v'=50\ cm/s

Hence , this is the required solution .

3 0
3 years ago
Which statement best describes the difference between acceleration and deceleration?
natima [27]
Acceleration is the rate at which an object picks up speed. deceleration is the rate at which an object loses speed.
7 0
3 years ago
The picture shows an object resting on a balance.
Maslowich

Answer:

4.90kgm^-2

Explanation:

4 0
2 years ago
Suppose 3 mol of neon (an ideal monatomic gas) at STP are compressed slowly and isothermally to 0.19 the original volume. The ga
Radda [10]

Answer:

a. 273 K b. 90.1 K c. 5.26 atm d. 0.33 atm

Explanation:

For isothermal expansion PV = constant

So, P₁V₁ = P₂V₂ where P₁ = initial pressure of gas = 1 atm (standard pressure), V₁ = initial volume of gas, P₂ = final pressure of gas and V₂ = final volume of gas,

So, P₁V₁ = P₂V₂

P₂ = P₁V₁/V₂

Since V₂/V₁ = 0.19,

P₂ = P₁V₁/V₂

P₂ = 1 atm (1/0.19)  

P₂ = 5.26 atm

For an adiabatic expansion, PVⁿ = constant where n = ratio of molar heat capacities = 5/3 for monoatomic gas

So, P₂V₂ⁿ = P₃V₃ⁿ where P₂ = initial pressure of gas = 5.26 atm, V₂ = initial volume of gas, P₃ = final pressure of gas and V₃ = final volume of gas,

So, P₂V₂ⁿ = P₃V₃ⁿ

P₃ = P₂V₂ⁿ/V₃ⁿ

P₃ = P₂(V₂/V₃)ⁿ

Since V₃ = V₁ ,V₂/V₃ = V₂/V₁ = 0.19

1/0.19,

P₃ = P₂(V₂/V₃)ⁿ

P₃ = 5.26 atm (0.19)⁽⁵/³⁾

P₃ = 5.26 atm × 0.0628

P₃ = 0.33 atm

Using the ideal gas equation

P₃V₃/T₃ = P₄V₄/T₄ where P₃ = pressure after adiabatic expansion = 0.33 atm , V₃ = volume after adiabatic expansion, T₃ = temperature after adiabatic expansion  P₄ = initial pressure of gas = P₁ = 1 atm , V₄ = initial volume of gas = V₁ and T₄ = initial temperature of gas = T₁ = 273 K (standard temperature)

P₃V₃/T₃ = P₄V₄/T₄

T₃ = P₃V₃T₄/P₄V₄    

T₃ = (P₃/P₄)(V₃/V₄)T₂

Since V₃ = V₄ = V₁ and P₄ = P₁

V₃/V₄ = 1 and P₃/P₄ = P₃/P₁

T₃ = (P₃/P₁)(V₃/V₄)T₂

T₃ = (0.33 atm/1 atm)(1)273 K  

T₃ = 90.1 K

So,

a. The highest temperature attained by the gas is T₁ = 273 K

b. The lowest temperature attained by the gas = T₃ = 90.1 K

c. The highest pressure attained by the gas is P₂ = 5.26 atm

d. The lowest pressure attained by the gas is P₃ = 0.33 atm

6 0
3 years ago
Other questions:
  • Which forces causes oppositely charged particles to attract each other?
    11·1 answer
  • the acceleration of a rocket traveling upward is given by a=(6+.02s)m/s^s, where s is in meters. Determine the rocket's velocity
    8·1 answer
  • I need help on the following questions.
    7·1 answer
  • g The steam above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot
    10·2 answers
  • Two solenoids are nested coaxially such that their magnetic fields point in opposite directions. Treat the solenoids as ideal. T
    14·1 answer
  • What does atomic spectrum mean?
    14·1 answer
  • You have a 6.00 V power supply, and
    14·1 answer
  • How are you going to identify a tool that is still functional​
    13·1 answer
  • An object moves in a direction parallel to its length with a velocity that approaches the velocity of light. The length of this
    9·1 answer
  • The other name for 'net force' is 'unbalanced force'. What is the name of the force that could be applied to an object that woul
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!