18.The octet rule tells us that in every chemical
reactions, elements will either gain or lose electrons to attain the noble gas electron
configuration. This stable<span> electron configuration is known as the octet configuration
since it is composed of 8 valence. Oxygen’s electron configuration is 1s2 2s2
2p4. So when</span> oxygen reacts with
other elements to form compounds, it completes the octet configuration by
taking 2 electrons from the element
it reacts with
19. Actually pure metals are made up not of
metal atoms but rather of closely packed cations (positively charge particles).
These cations are then surrounded by a pack of mobile valence electrons which
drift from one part of the metal<span> to
another. This is called metallic bond.</span>
20. This is the
energy which is needed to break a single bond. When the dissociation energy is
large, this means that the compound is more stable. Since carbon to carbon
bonds have high dissociation energy, therefore they are not very reactive.
21. Network solids are type of solids
in which the atoms are covalently bonded to one another, so they are very
stable. It takes higher temperature to melt them because breaking these
covalent bonds required greater energy. Some examples are:
- Diamond
<span>-Silicon Carbide</span>
Answer:
.
Start color: yellowish-green.
End color: dark purple.
Assumption: no other ion in the solution is colored.
Explanation:
In this reaction, chlorine gas
oxidizes iodine ions
to elemental iodide
. At the same time, the chlorine atoms are converted to chloride ions
.
Fluorine, chlorine, bromine, and iodine are all halogens. They are all found in the 17th column of the periodic table from the left. One similarity is that their anions are not colored. However, their elemental forms are typically colored. Besides, moving down the halogen column, the color becomes darker for each element.
Among the reactants of this reaction,
is colorless. If there's no other colored ion, only the yellowish-green hue of
would be visible. Hence the initial color of the reaction would be the yellowish-green color of
.
Similarly, among the products of this reaction,
is colorless. If there's no other colored ion, only the dark purple hue of
would be visible. Hence the initial color of the reaction would be the dark purple color of
.
Answer:
The answer to your question is 33.4 ml
Explanation:
Data
volume 1 = V1 = 42 ml
temperature 1 = T1 = 20°C
temperature 2 = T2 = -60°C
Volume 2 = V2 = x
Process
1.- Convert celsius to kelvin
T1 = 20 + 273 = 293°K
T2 = -60 + 273 = 233°K
2.- Use the Charles' law to solve this problem

Solve for V2
V2 = 
3.- Substitution
V2 = 
4.- Simplification
V2 = 
5.- Result
V2 = 33.4ml
They undergo nuclear fission.