Answer:
Support at Cy = 1.3 x 10³ k-N
Support at Ay = 200 k-N
Explanation:
given:
fb = 300 k-N/m
fc = 100 k-N/m
D = 300 k-N
L ab = 6 m
L bc = 6 m
L cd = 6 m
To get the reaction A or C.
take summation of moment either A or C.
<em><u>Support Cy:</u></em>
∑ M at Ay = 0
(( x1 * F ) + ( D * Lab ) + ( D * L bc + D * L cd )
Cy = -------------------------------------------------------------------
( L ab + L bc )
Cy = 1.3 x 10³ k-N
<em><u>Support Ay:</u></em>
Since ∑ F = 0, A + C - F - D = 0
A = F + D - C
Ay = 200 k-N
Test:
Performing a Litmus Test
Result:
Litmus paper gives the user a general indication of acidity or alkalinity as it correlates to the shade of red or blue that the paper turns.
- To test the pH of a substance, dip a strip of litmus paper into the solution or use a dropper or pipette to drip a small amount of solution onto the litmus paper.
- Blue litmus paper can indicate an acid with a pH between 4 and 5 or lower.
- Red litmus paper can show a base with a pH greater than 8.
- If a solution has a pH between 5 and 8, it will show little color change on the litmus paper.
- A base tested with blue litmus paper will not show any color change, nor will an acid tested with red litmus paper register a change in color.
The photoelectric effect is obtained when you shine a light on a material, resulting in the emission of electrons.
The kinetic energy of the electrons depends on the frequency of the light:
K = h(f - f₀)
where:
K = kinetic energy
h = Planck constant
f = light frequency
f₀ = threshold frequency
Rearranging the formula in the form y = m·x + b, we get:
K = hf - hf₀
where:
K = dependent variable
f = <span>indipendent variable
h = slope
hf</span>₀ = y-intercept
Every material has its own threshold frequency, therefore, what stays constant for all the materials is h = Planck constant (see picture attached).
Hence, the correct answer is
C) the slope.
Options:
(a) Total kinetic energy of the system remains constant.
(b) Total momentum of the system is conserved.
(c) Both A and B are true.
(d) Neither A nor B are true.
Answer:
(b) Total momentum of the system is conserved.
Explanation:
An inelastic collision is a type of collision in which momentum is conserved and kinetic energy is not conserved. That is, there is loss of kinetic energy.
In an inelastic collision:
Total momentum before collision = Total momentum after collision
An example of inelastic collision is seen in the ballistic pendulum, The ballistic pendulum is a device in which a projectile such as a bullet is fired into a suspended heavy wooden stationary block.
The speed of sound through air at room temperature is almost always 343 m/s. However, since it doesn't tell you that, use the equation wavelength=velocity/frequency. Plug in the numbers: 1.4=v/247, and v=345.8 m/s.