Answer:
The total number of oscillations made by the wave during the time of travel is 1.4 Oscillations. Strictly speaking, the number of complete oscillations is 1.
Explanation:
The required quantity is the number of complete oscillations made by the traveling wave. The amplitude time and frequency are not needed to calculate the number of oscillations as it is the ratio of the distance traveled to the wavelength( minimum distance that must be traveled to complete one oscillation) of the wave. So the total number of oscillations is 1.4 while the number of complete oscillations is 1 (strictly speaking). The detailed solution to this question can be found in the attachment below. Thank you!
Answer:
14.8 kg
Explanation:
We are given that




We have to find the mass of the pulley.
According to question



Moment of inertia of pulley=

Where 



Hence, the mass of the pulley=14.8 kg
Answer:
The width of the central bright fringe is 7.24 mm.
Explanation:
Given that,
Wavelength = 632.8 nm
Width d= 0.350 mm
Distance between screen and slit D= 2.00 m
We need to calculate the distance
Using formula of distance

Put the value into the formula


We need to calculate the width of the central bright fringe
Using formula of width

Put the value into the formula


Hence, The width of the central bright fringe is 7.24 mm.
The tendency of an object to resist a change in motion is called inertia.