Answer:
The initial temperature is 649 K (376 °C).
The final pressure is 0.965 MPa
Explanation:
From the ideal gas equation
PV = nRT
P is the initial pressure of water = 2 MPa = 2×10^6 Pa
V is intial volume = 150 L = 150/1000 = 0.15 m^3
n is the number of moles of water in the container = mass/MW = 1000 g/18 g/mol = 55.6 mol
R is gas constant = 8.314 m^3.Pa/mol.K
T (initial temperature) = PV/nR = (2×10^6 × 0.15)/(55.6 × 8.314) = 649 K = 649 - 273 = 376 °C
From pressure law,
P1/T1 = P2/T2
P2 (final pressure) = P1T2/T1
T2 (final temperature) = 40 °C = 40 + 273 = 313 K
P1 (initial pressure) = 2 MPa
T1 (initial temperature) = 649 K
P2 = 2 × 313/649 = 0.965 MPa
Answer:
metals, composite, ceramics and polymers.
Explanation:
The four categories of engineering materials used in manufacturing are metals, composite, ceramics and polymers.
i) Metals: Metals are solids made up of atoms held by matrix of electrons. They are good conductors of heat and electricity, ductile and strong.
ii) Composite: This is a combination of two or more materials. They have high strength to weight ratio, stiff, low conductivity. E.g are wood, concrete.
iii) Ceramics: They are inorganic, non-metallic crystalline compounds with high hardness and strength as well as poor conductors of electricity and heat.
iv) Polymers: They have low weight and are poor conductors of electricity and heat
Answer:
Explanation:
The detailed analysis and step by step calculation is as shown in the attachment.
The all purpose one will work or you could use type C I believe.