1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
2 years ago
8

Can someone help me LA project pls :((

Engineering
1 answer:
sweet [91]2 years ago
4 0

The three-step method that can be used to find the topic of an article are:

  • Pre-writing,
  • drafting
  • final revising stage

When making a review of an article and you want to find the topic, it is advised that you:

  • Read and understand the article
  • Write out the main points
  • With this you can find the theme
  • Then you can create a suitable title
<h3>What is a Text Review?</h3>

This refers to the academic process that is done on a piece of writing that aims to critique it.

Hence, we can see that the aforementioned steps would be beneficial to you.

Read more about Text Review here:

brainly.com/question/25955478

#SPJ1

You might be interested in
A saturated 1.5 ft3 clay sample has a natural water content of 25%, shrinkage limit (SL) of 12% and a specific gravity (GS) of 2
Svetllana [295]

79 f t^{3} is the volume of the sample when the water content is 10%.

<u>Explanation:</u>

Given Data:

V_{1}=100\ \mathrm{ft}^{3}

First has a natural water content of 25% = \frac{25}{100} = 0.25

Shrinkage limit, w_{1}=12 \%=\frac{12}{100}=0.12

G_{s}=2.70

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,

V \propto[1+e]

\frac{V_{2}}{V_{1}}=\frac{1+e_{2}}{1+e_{1}}  ------> eq 1

e_{1}=\frac{w_{1} \times G_{s}}{S_{r}}

The above equation is at S_{r}=1,

e_{1}=w_{1} \times G_{s}

Applying the given values, we get

e_{1}=0.25 \times 2.70=0.675

Shrinkage limit is lowest water content

e_{2}=w_{2} \times G_{s}

Applying the given values, we get

e_{2}=0.12 \times 2.70=0.324

Applying the found values in eq 1, we get

\frac{V_{2}}{100}=\frac{1+0.324}{1+0.675}=\frac{1.324}{1.675}=0.7904

V_{2}=0.7904 \times 100=79\ \mathrm{ft}^{3}

7 0
3 years ago
John Locke believed that:
Sholpan [36]

Answer:<em>, Locke believed that human nature gave people the chance to be selfish. This is apparent with the introduction of currency. In a natural state, all people were equal and independent and alone at times, and everyone had a natural right to defend his "life, health, liberty, or possessions.."</em>

<em>Explanation:</em>

3 0
3 years ago
At a point on the free surface of a stressed body, the normal stresses are 20 ksi (T) on a vertical plane and 30 ksi (C) on a ho
victus00 [196]

Answer:

The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero

Explanation:

The expression for the maximum shear stress is given:

\tau _{M} =\sqrt{(\frac{\sigma _{x}^{2}-\sigma _{y}^{2}  }{2})^{2}+\tau _{xy}^{2}    }

Where

σx = stress in vertical plane = 20 ksi

σy = stress in horizontal plane = -30 ksi

τM = 32 ksi

Replacing:

32=\sqrt{(\frac{20-(-30)}{2} )^{2} +\tau _{xy}^{2}  }

Solving for τxy:

τxy = ±19.98 ksi

The principal stress is:

\sigma _{x}+\sigma _{y} =\sigma _{p1}+\sigma _{p2}

Where

σp1 = 20 ksi

σp2 = -30 ksi

\sigma _{p1}  +\sigma _{p2}=-10 ksi (equation 1)

\tau _{M} =\frac{\sigma _{p1}-\sigma _{p2}}{2} \\\sigma _{p1}-\sigma _{p2}=2\tau _{M}\\\sigma _{p1}-\sigma _{p2}=32*2=64ksi equation 2

Solving both equations:

σp1 = 27 ksi

σp2 = -37 ksi

The shear stress on the vertical plane is zero

4 0
4 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Write a program to input 6 numbers. After each number is input, print the biggest of the numbers entered so far.
likoan [24]

Answer:

P<u>rogram:</u>

# Enter Numbers #

number1 = int(input("Enter number: " ))

print("Largest: " + string(number1))

#for num 2 #

number2 = int(input("Enter a number: "))

if number2 > number1:

 print("Largest: " + string(number2))

else:

 print("Largest: " + string(num1))

#for num 3 #

number3 = int(input("Enter a number: "))

print("Largest: " + string(max(number1, number2, number3)))  

#for num 4 #

number4 = int(input("Enter a number: "))

print("Largest: " + string(max(number1, number2, number3, number4)))

#for num 5 #

number5 = int(input("Enter a number: "))

print("Largest: " + string(max(number1, number2, number3, number4, number5)))

#for num 6 #

number6 = int(input("Enter a number: "))

print("Largest: " + string(max(number1, number2, number3, number4, number5, number6)))        

# END #

4 0
3 years ago
Other questions:
  • Methane gas at 25°C, 1 atm enters a reactor operating at steady-state and burns with 80% theoretical air entering at 227°C, 1 at
    10·1 answer
  • The assembly consists of two blocks A and B, which have a mass of 20 kg and 30 kg, respectively. Determine the distance B must d
    14·2 answers
  • What is pneumatic troubleshooting
    6·1 answer
  • A strong base (caustic or alkali) is added to oils to test for: b. entrained air a)- alkalinity b)- acidity c)- contamination. d
    11·1 answer
  • Which is an alloy made up of iron and carbon and has high compressive and tensile strength?
    6·1 answer
  • Air is compressed isothermally from 13 psia and 55°F to 80 psia in a reversible steady-flow device. Calculate the work required,
    14·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • The production of carbon dioxide makes it unwise and unsafe to operate a tractor or any motor vehicle inside enclosed spaces suc
    13·1 answer
  • What is the best way to collaborate with your team when publishing Instagram Stories from Hootsuite?
    14·1 answer
  • When you approach an uncontrolled intersection, you should treat it as though which sign is present?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!