Hi!
The answer would be A. Isobaric Process
<h3>Explanation:</h3>
Isobaric process is a process where the pressure inside a system remains unchanged. In the Pressure Volume graph given, you can see that the pressure (y axis) remains constant with an increasing volume ( x axis). An example of this would be heating a container with a movable piston. Now, the degree of pressure is dependent on the frequency of collisions of particles inside a system on the walls. If this frequency changes, the pressure changes (proportionally). In our example, heating a container with a movable piston results in the particles inside the container to gain kinetic energy and move faster, meaning an increased frequency of collisions (higher pressure), but at the system time the increase in pressure results in the piston being pushed outwards, causing the volume of the container to increase. This results in decreased frequency of collision of the particles with the walls of the container (lesser pressure). This results in the a zero net effect on the pressure.
Hope this helps!
Answer:
Number of revolutions=1.532 revolutions
Explanation:
Given data
Distance s=8.0 m
Angular speed a=1.2 rev/s
To find
Number of revolutions
Solution
From the equation of simple motion we not that

So for the number of revolutions she makes is given as

Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Answer:
Time always is on X axis.