The elapsed time when the particle returns to the origin is determined from the ratio of initial velocity and acceleration of the particle.
<h3>Time of motion of the particle</h3>
The time of motion of the particle is calculated by applying Newton's second law of motion.
F = ma
F = m(v)/t
where;
- t is time of motion of the particle
- m is mass of the particle
- v is velocity of the particle
a = v - u/t
v = u + at
when the particle returns to the origin, direction of u, = negative.
final velocity = 0
0 = -u + at
at = u
t = u/a
Learn more about force here: brainly.com/question/12970081
#SPJ11
No. You cannot rule out the battery even after the open circuit voltage measurement. The open-circuit voltage may not have changed but the battery's internal resistance may have greatly increased.
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
Answer:Same magnitude
Explanation:
When ball is dropped from shoulder height h then velocity at the bottom is given by

if it makes elastic collision then it will acquire the same velocity and riser up to the same height
If m is the mass of ball then impulse imparted is given by


Thus impulse imparted by gravity and Floor will have same magnitude of impulse but direction will be opposite to each other.