The answer is A). Moving from A to C the temperature and the kinetic energy increases.
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:

Answer:
1400 N
Explanation:
Verá, durante el salto mortal, el piloto se mueve en una trayectoria circular y la fuerza que actúa sobre él es una fuerza centrípeta.
Sea la fuerza centrípeta F, la masa del piloto (m) = 70 Kg, el radio (r) = 500 my la velocidad (v) = 360 km / hr * 1000/3600 = 100 m / s
F = mv ^ 2 / r
F = 70 * (100) ^ 2/500
F = 1400 N
Young's double slit experiment(YDSE) can be used for any kind of waves such as electromagnetic waves, sound waves, water waves, gravity waves. YDSE is based on interference. In this experiment, we make two waves interfere in order to obtain bright and dark fringes on the screen(in case of light).
You can carry this out with water, would be great if you try this at pond or water reservoir in order to see perfect ripples.
Answer:
F = 7.68 10¹¹ N, θ = 45º
Explanation:
In this exercise we ask for the net electric force. Let's start by writing the configuration of the charges, the charges of the same sign must be on the diagonal of the cube so that the net force is directed towards the interior of the cube, see in the attached numbering and sign of the charges
The net force is
F_ {net} = F₂₁ + F₂₃ + F₂₄
bold letters indicate vectors. The easiest method to solve this exercise is by using the components of each force.
let's use trigonometry
cos 45 = F₂₄ₓ / F₂₄
sin 45 = F_{24y) / F₂₄
F₂₄ₓ = F₂₄ cos 45
F_{24y} = F₂₄ sin 45
let's do the sum on each axis
X axis
Fₓ = -F₂₁ + F₂₄ₓ
Fₓ = -F₂₁₁ + F₂₄ cos 45
Y axis
F_y = - F₂₃ + F_{24y}
F_y = -F₂₃ + F₂₄ sin 45
They indicate that the magnitude of all charges is the same, therefore
F₂₁ = F₂₃
Let's use Coulomb's law
F₂₁ = k q₁ q₂ / r₁₂²
the distance between the two charges is
r = a
F₂₁ = k q² / a²
we calculate F₂₄
F₂₄ = k q₂ q₄ / r₂₄²
the distance is
r² = a² + a²
r² = 2 a²
we substitute
F₂₄ = k q² / 2 a²
we substitute in the components of the forces
Fx =
Fx =
( -1 + ½ cos 45)
F_y = k \frac{q^2}{a^2} ( -1 + ½ sin 45)
We calculate
F₀ = 9 10⁹ 4.25² / 0.440²
F₀ = 8.40 10¹¹ N
Fₓ = 8.40 10¹¹ (½ 0.707 - 1)
Fₓ = -5.43 10¹¹ N
remember cos 45 = sin 45
F_y = - 5.43 10¹¹ N
We can give the resultant force in two ways
a) F = Fₓ î + F_y ^j
F = -5.43 10¹¹ (i + j) N
b) In the form of module and angle.
For the module we use the Pythagorean theorem
F =
F = 5.43 10¹¹ √2
F = 7.68 10¹¹ N
in angle is
θ = 45º