Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step 3.
Answer:
2-methoxybutane
Explanation:
This reaction is an example of Nucleophilic substitution reaction. Also, the reaction of (S)-2-bromobutane with sodium methoxide in acetone, is bimolecular nucleophilic substitution (SN2). The reaction equation is given below.
(S)-2-bromobutane + sodium methoxide (in acetone) → 2-methoxybutane
Hello!
Understanding how much of a product is produced in a reaction is referred to as Stoichiometrically understanding the reaction.
Stoichiometry is the calculation of the quantitative relationships between reactants and products in a chemical reaction. The first to talk about stoichiometry was Jeremias Benjamin Ritcher, who said that "Stoichiometry is the science that measures the quantitative proportions or mass ratios of chemical elements that are involved in a chemical reaction".
To calculate how much of a product is produced in a reaction, Stoichiometry is used, applying the law of conservation of mass. That means that the amount of product can be calculated from the amounts of reactants if they are known.
Answer:
2Na + 2H2O → 2NaOH + H2
Explanation:
A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge are the same for both the reactants and the products.