Answer:
36.87 km/h
Explanation:
Convert all the units in SI system
1 mile = 1609.34 m
d1 = 6 mi = 9656.04 m
t1 = 15 min = 15 x 60 = 900 s
d2 = 3 mi = 4828.02 m
t2 = 10 min = 10 x 60 = 600 s
d3 = 1 mi = 1609.34 m
t3 = 2 min = 2 x 60 = 120 s
d4 = 0.5 mi = 804.67 m
t4 = 0.5 min = 0.5 x 60 = 30 s
Total distance, d = d1 + d2 + d3 + d4
d = 9656.04 + 4828.02 + 1609.34 + 804.67 = 16898.07 m = 16.898 km
total time, t = t1 + t2 + t3 + t4
t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h
The ratio of the total distance covered to the total time taken is called average speed.
Average speed = 16.898 / 0.4583 = 36.87 km/h
Answer:

Explanation:
From the question we are told that:
Mass 
Deviation 
Time 
Generally the equation for moment of inertia is mathematically given by



Answer:
Explanation:
Initial height from the ground = .41 m
Final height = 1m
Height by which Kelli was raised ( h )= .59 m
When she passes through the lowest point , she loses P E
= mgh
= 440 x .59
= 259.6 J
kinetic energy possessed by her
= 1/2 mv²
= .5 x (440/9.8) x 2²
= 89.8 J
Difference of energy is lost due to work by air friction
work done by friction = 89.8 - 259.6
= - 169.8 J
Answer:
(a) 0 (b) 
Explanation:
Given that,
Mass of a supertanker, 
The engine of a generate a forward thrust of, 
(a) As the supertanker is moving with a constant velocity. We need to find the magnitude of the resistive force exerted on the tanker by the water. It is given by :
F = ma, a is the acceleration
For constant velocity, a = 0
So, F = 0
(b) The magnitude of the upward buoyant force exerted on the tanker by the water is equal to the weight of the ship.
F = mg

Hence, this is the required solution.
Answer
a)Given,
Wavelength of blue light = 450 n m = 450 x 10⁻⁹ m
Speed of light = 3 x 10⁸ m/s
we know,




b)Given,
Wavelength of red light = 650 n m = 650 x 10⁻⁹ m
Speed of light = 3 x 10⁸ m/s
we know,



