The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
The answer is Ultraviolet
Answer:
The force is Inertia
Explanation:
The force that acts on an object to move it from rest or a constant straight line motion is known as Inertia.
In physics the above statement is governed by Newton's first law of motion which is also known as Law of Inertia.
This law states that, an object that is at rest will remain at rest and an object that is moving will continue to move in a straight line with constant speed, if and only if the net force acting on the object is zero.
This implies that, A stationary object will remain motionless if no force acts on it while a object with constant velocity will continue moving with constant velocity until a force acts on it (neglecting resistance from air and friction).
If the applied force is in the same direction as the object's displacement, the work done on the object is:
W = Fd
W = work, F = force, d = displacement
Given values:
F = 45N
d = 12m
Plug in and solve for W:
W = 45(12)
W = 540J