Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of hydrazine is 
The initial temperature is 
The final temperature is 
The specific heat capacity is ![c_h = 0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)](https://tex.z-dn.net/?f=c_h%20%20%3D%20%200.099%20%5BkJ%2F%28mol%20K%29%5D%20%3D%200.099%20%2A10%5E3%20J%2F%28mol%2FK%29)
The power available is 
The mass of the fuel is 
Generally the number of moles of hydrazine present is

=> 
=> 
Generally the quantity of heat energy needed is mathematically represented as
=>
=>
Generally the time taken is mathematically represented as

=> 
=> t = 2480505.6377 s
Converting to hours

=> 
Answer:
D) 735 J(oules)
Explanation:
Work is defined as force * distance
Force is defined as mass * acceleration
Given a mass of 15 kg and a gravitational acceleration of 9.8 m/s² since the box is being lifted up, the force being applied to the box is 15 kg * 9.8 m/s² = 147 N
Since the distance is 5 meters, the work done is 147 N * 5 m = 735 N/m = 735 J, making D the correct answer.
Answer:
Energy=3.1times 10^-17 J
Rest mass: 6.2 kg
Speed: 47.5 m/s
Wavelength: 2.659 times 10^-6
Momentum: 67.3 kg(m/s)
Explanation:
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
Answer:
Gravitational Potential Energy
Explanation:
a ball is held rest at the top of hill
gravitational potential energy will store due to its height
it. and body will start move downward and its potential energy will convert into kinetic energy due to motion of body
at the ground level it will stop and potential energy will became zero and kinetic energy get convert into internal energy due to collisions