Answer:
Doing work' is a way of transferring energy from one object to another, energy is transferred when a force moves through a distance.
Explanation: So more energy, more work done bc u transferred more energy to move the object and doing the work. and if you only use a little of energy, the work done also only a little.
Two identical balls collide<span> head on. The </span>initial velocity<span> of </span>one<span> is 0.75 </span>m/s<span> east, while that of the </span>other one<span> is 0.43 </span>m/s west<span>.</span>
The correct options are:
D
"Radio waves have a lower frequency, which makes them safer for humans."
B
"Radio waves take less energy to produce."
<h3>
Why do we radio waves over other electromagnetic waves to transmit information to Earth? </h3>
Radio waves are electromagnetic waves with frequencies on the range from 10 KHz to 10 THz.
Now, remember that all electromagnetic waves have the same speed, which is the speed of light, and the energy of a wave is proportional to its frequency.
Particularly, we can see that radio waves have small frequencies (smaller than infrared light) so these waves carry very little energy.
With that in mind, the correct options are.
D
"Radio waves have a lower frequency, which makes them safer for humans."
B
"Radio waves take less energy to produce."
These are the two main reasons of why we use radio waves.
If you want to learn more about electromagnetic waves.
brainly.com/question/14015797
#SPJ1
Radars are frequently used to identify distance and speed, such as how far away an object is or how fast it is moving. <span>The </span>radar<span> device can then use the change in frequency to </span>determine the speed<span> at which the </span>car<span> is moving. In laser-</span>speed<span> guns, waves of light are </span>used<span> in place of radio waves.</span>
Explanation:
Large electrical shifting magnets have concentrated retaining strength to lift dense, ferric objects and a deep-reaching magnetization. An immensely useful materials management technique is these electromagnetic rises.