Answer:
An orbital is a region in space where there is a high probability of finding an electron.
Explanation:
The orbital is a concept that developed in quantum mechanics. Recall that Neils Bohr postulated that the electron occupied stationary states which he called energy levels. Electrons emit radiation when the move from a higher to a lower energy level. Similarly, energy is absorbed by an electron to move from a lower to a higher orbit.
This idea was upturned by the Heisenberg uncertainty principle. This principle state that the momentum and position of a particle can not be simultaneously measured with precision.
Instead of defining a 'fixed position' for the electron, we define a region in space where there is a possibility of finding an electron with a certain amount of energy. This orbital is identified by a set of quantum numbers.
The volume of object is 3.2 ml
<h3>Explanation:</h3>
Given:
Mass of the object = M = 9.6 g
Initial volume of liquid: 
Final volume of liquid after displacement: 
Total volume of the displaced object inside a graduating cylinder will be given as difference between the final volume and initial volume of the expanding object.

V = 3.2 ml
Answer:
hydrophobic proteins (larger molecules)
Explanation:
It is generally known that larger proteins require less ionic input than do smaller proteins with lesser weight.
Answer: The volume of the gas at a pressure of 800 mm Hg is 75 mL.
Explanation:
Given:
= 100.0 mL,
= 600 mm Hg
= ?,
= 800 mm Hg
According to Boyle's law, at constant temperature the pressure of given mass of an ideal gas is inversely proportional to volume.
Hence, formula used to calculate new volume of the gas is as follows.

Substitute the values into above formula.

Therefore, we can conclude that the volume of the gas at a pressure of 800 mm Hg is 75 mL.
Answer:
[ N₂(g) ] = 0.016 M
Explanation:
N₂(g) + 3 H₂(g) ↔ 2 NH₃(g)
The equilibrium constant for the above reaction , can be written as the product of the concentration of product raised to the power of stoichiometric coefficients in a balanced equation of dissociation divided by the product of the concentration of reactant raised to the power of stoichiometric coefficients in the balanced equation of dissociation .
Hence ,
Kc = [ NH₃ (g) ]² / [ N₂(g) ] [ H₂(g) ]³
From the question ,
[ NH₃ (g) ] = 0.5 M
[ N₂(g) ] = ?
[ H₂(g) ] = 2.0 M
Kc = 2
Now, putting it in the above equation ,
Kc = [ NH₃ (g) ]² / [ N₂(g) ] [ H₂(g) ]³
2 = [ 0.5 M ]² / [ N₂(g) ] [ 2.0 M ]³
[ N₂(g) ] = 0.016 M .