Answer:

Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:

Where
is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:

Also, at sea level, we have an atmospheric pressure of:

Given mole fraction:

According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:

Then the equation becomes:

Solve for
:

Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:

Apply Henry's law using the constant we found:

Answer:
"1.
buoyant or suspended in water or air.
2.not settled in a definite place; fluctuating or variable."
Explanation:
Hope this helps! :)
When ketone is reacted with phosphorous pentachloride, chlorination takes place at the carbonyl carbon with substitution of the oxygen atom to give a geminal dichloride (with 2 Cl atoms on same carbon) according to the following equation:
so we can say that acetone is converted into 2,2-dichloropropane by action of PCl₅
<span />
Increase at the temperature
Given mass of Scandium = 50.0 g
Increase in temperature of the metal when heated = 
Heat absorbed by Scandium = 
The equation showing the relationship between heat, mass, specific heat and temperature change:

Where Q is heat = 
m is mass = 50.0 g
ΔT = 
On plugging in the values and solving for C(specific heat) we get,
=50.0g(C)(
)
C = 0.491
Specific heat of the metal = 0.491