Answer:
The bismuth sample.
Explanation:
The specific heat
of a substance (might not be a metal) is the amount of heat required for heating a unit mass of this substance by unit temperature (e.g.,
.) The formula for specific heat is:
,
where
is the amount of heat supplied.
is the mass of the sample.
is the increase in temperature.
In this question, the value of
(amount of heat supplied to the metal) and
(mass of the metal sample) are the same for all four metals. To find
(change in temperature,) rearrange the equation:
,
.
In other words, the change in temperature of the sample,
can be expressed as a fraction. Additionally, the specific heat of sample,
, is in the denominator of that fraction. Hence, the value of the fraction would be the largest for sample with the smallest specific heat.
Make sure that all the specific heat values are in the same unit. Find the one with the smallest specific heat: bismuth (
.) That sample would have the greatest increase in temperature. Since all six samples started at the same temperature, the bismuth sample would also have the highest final temperature.
Answer:
its not cear to answer this question
Answer:
The glycosylation reaction or glycoside formation is an organic reaction in which the hemiacetal group of cyclists ketoses or aldoses turns into acetals, named glycosides. Reaction in the attached picture.
Explanation:
Carbohydrates can be found in an open-chain form or a cyclic form. For the second one, the carbonyl group of the aldehyde could react with the alcohol group of the molecule to form the cycle. As shown in the attached picture, the alcohol group of this cyclic form could react with an alcohol (like methanol) in acidic conditions to form an acetal. These compounds are stable at neutral and acidic conditions, but they hydrolyze at basic conditions. This reaction produces both acetals anomers (α and β) because the attack of the nucleophile (alcohol) could be from both sides. However, the most stable anomer will predominate.
Answer:
Volume of acid, Va=250mL; Volume of quinine,Vb=20mL; Molarity of acid, Ma=0.05M.
Molar mass of acid= H2+S+O4= 2+32+(16X4)= 2+32+64=98g
Concentration of acid, Ca= Molar mass of acid/ Ma =98/0.05=1960g/mol
Explanation: To calculate concentration of quinine, Cb is as follow
Va*Ca=Vb*Cb
∴ Cb=Va*Ca/Vb =250*1960/20 =24500g/mol