Answer:
1.1 × 10² g
Explanation:
The combustion of gasoline releases energy that is used to move the car. The enthalpy of reaction (ΔH°rxn) of the combustion of gasoline is 47 kJ/g, that is, 47 kiloJoule are produced per gram of gasoline burned. The mass of gasoline to be burned to release 5,375 kJ is:
5,375 kJ × 1 g Gasoline/47 kJ = 1.1 × 10² g
Answer:
The answer to your question is: They are stronger than those in water.
Explanation:
When a substance is heated, heat is breaking forces among molecules like hydrogen bonds, london forces, van der waals forces, etc, if a substance has a lot of these forces, the boiling point will be higher because more forces must be broken.Then, glycerol must have stronger forces than those of water.
Answer:
101.56 of H₂O
Explanation:
The balanced equation for the reaction is given below:
CH₄ + 2O₂ —> CO₂ + 2H₂O
Next, we shall determine the mass of CH₄ that reacted and the mass of H₂O produced from the balanced equation. This is illustrated below:
Molar mass of CH₄ = 12 + (4×1.01)
= 12 + 4.04
= 16.04 g/mol
Mass of CH₄ from the balanced equation = 1 × 16.04 = 16.04 g
Molar mass of H₂O = (2×1.01) + 16
= 2.02 + 16
= 18.02 g/mol
Mass of H₂O from the balanced equation = 2 × 18.02 = 36.04g
SUMMARY:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Finally, we shall determine the mass of water, H₂O produced by the reaction of 45.2 g of methane, CH₄. This can be obtained as illustrated below:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Therefore 45.2 g of CH₄ will react to produce = (45.2 × 36.04)/16.04 = 101.56 g of H₂O.
Thus, 101.56 of H₂O were obtained.
Answer:
38.0 g C2F3Cl3) / (187.3756 g C2F3Cl3/mol) x (3 mol Cl / 1 mol C2F3Cl3) x (35.4532 g Cl/mol) =
21.6 g Cl in C2F3Cl3