1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
4 years ago
5

What is the formula that represents the simplest ratio of the atoms in the components

Physics
1 answer:
Dafna1 [17]4 years ago
5 0

Answer:

Empirical formula

<em>Hope</em><em> </em><em>it'll</em><em> </em><em>help</em><em>!</em>

<em>stay</em><em> </em><em>safe</em><em>:</em><em>)</em>

You might be interested in
The diagram shows a stone suspended under the surface of a liquid from a string. The stone experiences a pressure caused by the
Ivan
Where is the diagram? What is the question?
6 0
3 years ago
A block attached to a spring with an unknown spring constant oscillates with a period of 2.0 s. What is the period if
Zigmanuir [339]

Answer:

a) If the mass is doubled, then the period is increased by \sqrt{2}. Hence, the period of the system is 2.828 seconds.

b) If the mass is halved, then the period is reduced by \frac{\sqrt{2}}{2}. Hence, the period of the system is 1.414 seconds.

c) The period of the system does not depend on amplitude. Hence, the period of the system is 2 seconds.

d) If the spring constant is doubled, then the period is reduced by \frac{\sqrt{2}}{2}. Hence, the period of the system is 1.414 seconds.

Explanation:

The statement is incomplete. We proceed to present the complete statement: <em>A block attached to a spring with unknown spring constant oscillates with a period of 2.00 s. What is the period if </em><em>a. </em><em>The mass is doubled? </em><em>b.</em><em> The mass is halved? </em><em>c.</em><em> The amplitude is doubled? </em><em>d.</em><em> The spring constant is doubled? </em>

We have a block-spring system, whose angular frequency (\omega) is defined by the following formula:

\omega = \sqrt{\frac{k}{m} } (1)

Where:

k - Spring constant, measured in newtons per meter.

m - Mass, measured in kilograms.

And the period (T), measured in seconds, is determined by the following expression:

T = \frac{2\pi}{\omega} (2)

By applying (1) in (2), we get the following formula:

T = 2\pi\cdot \sqrt{\frac{m}{k} }

a) If the mass is doubled, then the period is increased by \sqrt{2}. Hence, the period of the system is 2.828 seconds.

b) If the mass is halved, then the period is reduced by \frac{\sqrt{2}}{2}. Hence, the period of the system is 1.414 seconds.

c) The period of the system does not depend on amplitude. Hence, the period of the system is 2 seconds.

d) If the spring constant is doubled, then the period is reduced by \frac{\sqrt{2}}{2}. Hence, the period of the system is 1.414 seconds.

8 0
3 years ago
The parachute on a drag racing car deploys at the end of a run. If the car has a mass of 820 kg and the car is moving 36 m/s, wh
Lelechka [254]

In order to determine the required force to stop the car, proceed as follow:

Calculate the deceleration of the car, by using the following formula:

v^2=v^2_o-2ax

where,

v: final speed = 0m/s (the car stops)

vo: initial speed = 36m/s

x: distance traveled = 980m

a: deceleration of the car= ?

Solve the equation above for a, replace the values of the other parameters and simplify:

\begin{gathered} a=\frac{v^2_o-v^2}{2x} \\ a=\frac{(36\frac{m}{s})^2-(0\frac{m}{s})^2}{2(980m)}=0.66\frac{m}{s^2} \end{gathered}

Next, consider that the formula for the force is:

F=ma

where,

m: mass of the car = 820 kg

a: deceleration of the car = 0.66m/s^2

Replace the previous values and simplify:

F=(820kg)(0.66\frac{m}{s^2})=542.20N

Hence, the required force to stop the car is 542.20N

4 0
1 year ago
NEED HELP!
rjkz [21]
C.<span>a stable internal attribution</span>
4 0
4 years ago
Read 2 more answers
The momentum of an object is determined to be 7.2 x 10-3 cm kg x m/s. Express this as provided or use any equivalent unit. How i
Leno4ka [110]

Complete Question:

The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (Note: 1 kg = 1000 g).

Answer:

7.2 gm/s.

Explanation:

Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.

Mathematically, momentum is given by the formula;

Momentum = mass * velocity

Given the following data;

Momentum = 7.2 * 10^-3 kgm/s

1 kg = 1000 g

Substituting the unit in kilograms with grams, we have;

Momentum = 7.2 * 10^-3 * 1000 gm/s

<em>Momentum = 7.2 gm/s. </em>

7 0
3 years ago
Other questions:
  • Calculate the Energy (E) in joules for that wavelength and record it in the table below. Remember that E = HF, where h the Planc
    11·1 answer
  • Imagine you derive the following expression by analyzing the physics of a particular system: a=gsinθ−μkgcosθ, where g=9.80meter/
    6·1 answer
  • A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \
    9·1 answer
  • What is the significance of the Taylor experiment?
    9·2 answers
  • A 1 kg rock is suspended by a massless string from one end of a meter stick at the 0 cm mark. What is the mass m suspended from
    14·1 answer
  • Give an example of a measurement that is precise to the nearest tenth of a gram.
    13·1 answer
  • What is a particle model of mass
    15·1 answer
  • A student wants to determine the effect of mass on kinetic energy. She will drop two balls of the same size into a pool of water
    12·1 answer
  • Please help me! As quickly as possible
    9·1 answer
  • When a jet plane is cruising at high altitude, the flight attendants have more of a "hill" to climb as they walk forward along t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!