Answer:
M = 0.115 kg
Explanation:
given,
mass of arrow = 120 g = 0.12 Kg
speed of arrow before it strike apple = 29.7 m/s
distance traveled by the arrow stick combination = 9.30 m
height of the son = 1.85 m
weight of the apple = ?
now,
time of flight of arrow and apple combination
using equation of motion




t = 0.614 s


s = 15.15 m/s
using conservation of momentum
m v = (M+ m) s
0.12 x 29.7 = (M+ 0.12) x 15.15
M+ 0.12 = 0.235
M = 0.115 kg
mass of apple is equal to 0.115 Kg
Answer:
(a)= 264mmHg
(b)= 2000mmHg
(c)474.82mmHg
(d)= 511.63mmHg
Explanation:
the question deals with boyles law, which states that the volume of a given mass of gas at constant temperature is inversely proportional to its pressure
V ∝ 1/P
P₁V₁ = P₂V₂
making V₂ as the subject of formular
P₂ = P₁V₁/ V₂
with a volume of 25.0L
P₂ = 660×10 / 25
= 264mmHg
with a volume of 3.30 L
P₂ = 660 × 10 / 3.30
= 2000mmHg
with a volume of 13900 mL
= 13.9L
P₂ =660× 10 / 13.9
474.82mmHg
with a volume of 12900 mL
P₂ =660×10 / 12.9
= 511.63mmHg
A physical quantity is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as the combination of a numerical value and a unit. For example, the physical quantity mass can be quantified as n kg, where n is the numerical value and kg is the unit.
Answer:
A) 6.5 m/s²
Explanation:
Mass of the bucket, m = 3.0 kg
depth of the well, d = 10 m
tension on the rope, T = 9.8 N
The net downward force on the bucket is given as;
T = mg - ma
where;
a is downward acceleration of the bucket
9.8 = (3 x 9.8) - 3a
9.8 = 29.4 - 3a
3a = 29.4 - 9.8
3a = 19.6
a = 19.6 / 3
a = 6.53 m/s² downwards
Therefore, the acceleration of the bucket is 6.53 m/s² downwards