1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
2 years ago
7

Jenny puts a book on her desk. Jenny’s book has an area of 200 cm2.It exerts a pressure of 0.05 N/cm2 on the desk. What is the w

eight of the book? *
Physics
1 answer:
Luden [163]2 years ago
8 0
The weight is 10N :))
You might be interested in
a closed tank is partially filled with glycerin. if the air pressure in the tank is 6 lb/in.2 and the depth of glycerin is 10 ft
vlabodo [156]

Answer:

<u><em>note:</em></u>

<u><em>solution is attached due to error in mathematical equation. please find the attachment</em></u>

4 0
3 years ago
An airplane flies at 150 km/hr. (a) The airplane is towing a banner that is b = 0.8 m tall and l = 25 m long. If the drag coef-
maw [93]

Answer:

  1. Power requirement <u>P</u> for the banner is found to be  30.62 W
  2. Power requirement <u>P</u> for the solid flat plate is found to be 653.225 W
  3. Answer for part(c) is explained below in the explanation section and can be summarized as: The main difference between the drags and power requirements of the two objects of same size was due to their significantly different drag-coefficients. The <em>Cd </em>for banner was given, whereas the <em>Cd </em>for a flat plate is generally found to be around <em><u>1.28</u></em><em> </em>which is the value we used in our calculations that resulted in a huge increase of power to tow the flat plate
  4. Power requirement <u>P</u> for the smooth spherical balloon was found to be 40.08 W

Explanation:

First of all we will establish variables and equations known that are known to us to solve this question. Since we are given the velocity of the airplane:

  1. v = velocity of airplane i.e. 150 km/hr. To convert it into m/s we will divide it by 3.6 which gives us 41.66 m/s
  2. The density of air at s.t.p (standard temperature pressure) is given as d = 1.225 kg / m^3
  3. The power can be determined this equation: P = F . v, where F represents <em>the drag-force</em> that we will need to determine and v represents the<em> velocity of the airplane</em>
  4. The equation to determine drag-force is: F = 1/2 * d *  C_d * A

In the drag-force equation Cd represents the c<em>o-efficient of drag</em> and A represents the <em>frontal area of the banner/plate/balloon (the object being towed)</em>

Frontal area A of the banner is : 25 x 0.8 = 20 m^2

<u>Part a)</u> We will plug in in the values of Cd, d, A in the drag-force equation i.e. Fd = <em>1/2 * 0.06* 1.225 * 20</em> = 0.735 N. Now to find the power P we will use P = F . v i.e.<em> 0.735 * 41.66</em> = <u><em>30.62 W</em></u>

<em></em>

<u>Part b) </u>For this part the only thing that has fundamentally changed is the drag-coefficient Cd since it's now of a solid flat plate and not a banner. The drag-coefficient of a flat plate is approximately given as : Cd_fp = 1.28

Now we will plug-in our values into the same equations as above to determine drag-force and then power. i.e. Fd = <em>1/2 * 1.28 * 1.225 * 20</em> = 15.68 N. Using Fd to determine power, P = 15.68 * 41.66 = <u><em>653.225 W</em></u>

<u><em></em></u>

<u>Part c)</u> The main reason for such a huge power difference between two objects of same size was due to their differing drag-coefficients, as drag-coefficients are generally large for objects that are not of a streamlined shape and leave a large wake (a zone of low air pressure behind them). The flat plate being solid had a large Cd where as the banner had a considerably low Cd and therefore a much lower power consumption

<u>Part d)</u> The power of a smooth sphere can be calculated in the same manner as the above two. We just have to look up the Cd of a smooth sphere which is found to be around 0.5 i.e. Cd_s = 0.5. Area of sphere A is given as : <em>pi* r^2 (r = d / 2).</em> Now using the same method as above:

Fd = 1/2 * 0.5 * 3.14 * 1.225 = 0.962 N

P = 0.962 * 41.66 = <u><em>40.08 W</em></u>

4 0
3 years ago
PLS THIS IS DUE IN 2 MINUTES
luda_lava [24]

Answer:

The toy car

Explanation:

the real car is parked so yeah but maybe in some way technically the real car has more "momentum"

7 0
3 years ago
Can someone help me with this? (The answer marked in red text is a incorrect answer)
Tju [1.3M]

Answer:

the answer is A

Explanation:

because I just know

3 0
3 years ago
In which condition the acceleration of a moving vehicle become zero​
Alekssandra [29.7K]

Explanation:

When,the vehicle has uniform velocity, it's acceleration becomes zero

4 0
3 years ago
Other questions:
  • The particles ejected from the sun during a coronal mass ejection is called
    12·1 answer
  • two boys started runing stright to ward each other from two pionts 100m aparts.one run at speed of 4m/s and other at 6m/s.how fa
    15·1 answer
  • An athlete rotates a 1.00-kg discus along a circular path of radius 1.09 m. The maximum speed of the discus is 17.0 m/s. Determi
    7·1 answer
  • Most high mountain ranges are composed of
    14·1 answer
  • Which objects represents a negatively charged particle?
    9·2 answers
  • A temperature of 20°C is equivalent to approximately
    9·2 answers
  • The water at Niagara Falls drops through a height of 55.0 m. If the water’s loss of gravitational potential energy shows up as a
    8·1 answer
  • Where do most comets in our solar system come from?
    8·2 answers
  • 2)
    7·1 answer
  • 9. Steradian is the angel which lies in:<br> a) One dimension<br> b) Two dimensions
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!