Answer:
8.049 MW
Explanation:
The expression for gravitational potential energy is given as
Ep = mgh............. Equation 1
Ep = gravitational potential energy, m = mass of water, h = height, g = acceleration due to gravity.
Given: m = 58.4×10³ kg, h = 20.1 m, g = 9.81 m/s²
Substitute into equation 1
Ep = 58.4×10³(20.1)(9.81)
Ep = 1.6098×10⁷ J.
If one half the gravitational potential energy of the water were converted to electrical energy
Electrical energy = Ep/2
Electrical energy = (1.6098×10⁷)/2
Electrical energy = 8.049×10⁶ J
In one seconds,
The power generated = 8.049×10⁶ W
Power generated = 8.049 MW
Answer:
Explanation:
v= u + at
v is final velocity , u is initial velocity . a is acceleration and t is time
Initial velocity u = 0 . Putting the given values in the equation
v = 0 + g sin 18 x 3.5
= 10.6 m /s
Answer:

Explanation:
Distance travelled = 200 metre
Time taken = 24 second
Velocity = ?
<u>Finding </u><u>the</u><u> </u><u>velocity</u><u> </u>



Hope I helped!
Best regards!
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height.
<span>In that particular situation, you can prove it like this: </span>
<span>initial velocity is Vo </span>
<span>launch angle is α </span>
<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>
<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>
<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>
<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>
<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>
<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>
<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>