Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
The answer is A. locations by the ocean typically do not get as cold in the winter or as hot in the summer as locations that are located inland.
Curved line
Explanation:
Acceleration of motion is represented by a curved line on a non-linear distance-time graph.
The acceleration of a non-linear motion is depicted using a parabola which is a curve. This implies that the velocity is constantly changing and the distance covered by the body is also changing with equal amount of time.
- A plot of this will give a parabola. This can be further established using one of the equations of motion below:
x = u +
at ²
This is a quadratic function where:
x is the distance
u is the initial velocity
t is the time
a is acceleration
A quadratic function gives a curved line which is a parabola.
Learn more:
Acceleration brainly.com/question/10932946
#learnwithBrainly
Because it reverses an image there for making the objects appear on opposite side
Answer: Option (c) is the correct answer.
Explanation:
When a penny is dropped from a height of 20 meters then it will achieve an acceleration.
As acceleration is the rate of change in velocity of an object with respect to time. Therefore, the velocity does not remain constant.
Whereas mass of the penny will remain the same as it will not get affected when it falls. Also, there will be no change in direction of the penny as it is falling only in one direction.
The acceleration of penny is due to the force of gravity.
Thus, we can conclude that the force of gravity causes it to accelerate.