Answer:
A state of rest or balance due to the equal action of opposing forces.
Answer:
a = = 37.2V
b = 13.39MJ
Explanation:
Given that
L = 170 × 10³
r = d/2
= 10cm / 2 = 5 cm
current I = 100A
we are to find the potential drop across the cable
so, we can use ohm’s law
V = IR = I (ρL/A)
ρ = resistivity of the copper
= 1.72 × 10⁻⁸ Ω.m
A = πr²
V = I(ρL/πr²)
= 100 (( 1.72 × 10⁻⁸ * 170 × 10³) / ( π * 0.05²))
= 37.2V
(b)
Energy (loss) = Pt
Enery (loss) = IVt
3600s per hour
= (100A)(37.2V)(3600s)
= 13.39MJ
Answer:
flat sole
Explanation:
the pointed heels will sink in the sand whereas the flat sole will not.
Answer:
flux=13.92W/m^2
Explanation:
The heat transfer by conduction consists in the transport of energy through particles that are together, that is to say by means of solids, Newton developed an equation that allows to know the heat transported in a flat plate knowing the cross sectional area A, Thickness L, conductivity K and a temperature difference between the internal and external surface.
Q=KA(t2-t1)/L
To know the heat flux we simply divide both sides of the equation by the area.
Flux=K(t2-t1)/L
where
K=0.029w/mk
L=25mm=0.025m
t2-t1=12 ° C
solving
Flux=(0.029)(12)/(0.025)
flux=13.92W/m^2
Answer:
The velocity is 19.39 m/s
Solution:
As per the question:
Mass, m = 75 kg
Radius, R = 19.2 m
Now,
When the mass is at the top position in the loop, then the necessary centrifugal force is to keep the mass on the path is provided by the gravitational force acting downwards.


where
v = velocity
g = acceleration due to gravity
