Answer:
B. About 12 degrees
Explanation:
The orbital period is calculated using the following expression:
T = 2π*(
)
Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.
Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.
Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:
= 
Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be
years, or 31.62 years.
We find the amount of degrees it moves in 1 year:

or about 12 degrees.
The answer is C in this question.
Answer:
78 million in standard form is 78,000,000
The answer is mass. I have to comment more than 20 characters.
Answer:
0.25m/s
Explanation:
Given parameters
m₁ = 5kg
v₁ = 1.0m/s
m₂ = 15kg
v₂ = 0m/s
Unknown:
velocity after collision = ?
Solution:
Momentum before collision and after collision will be the same. For inelastic collision;
m₁v₁ + m₂v₂ = v(m₁ + m₂)
Insert parameters and solve for v;
5 x 1 + 15 x 0 = v (5 + 15 )
5 = 20v
v =
= 0.25m/s