Answer:
The new pressure becomes one third of the initial pressure.
Explanation:
The relation between pressure and volume at constant temperature is given by :

Let new pressure and volume be P' and V' respectively.
V'=3V (given)
So,

Hence, new pressure becomes one third of the initial pressure.
Heyyy!!
Your answer is True.
Please mark it as brainliest.
Hope it helps you.
Frequency = velocity of propagation / wavelength.
<span>For light, we assume it is moving in a vacuum, so vp is 3e8 m/s. The wavelength of 310nm is 310e-9 meters. Then we plug the numbers in, and we get (3e8 m/s) / (310e-9 m) = 967.742e12 Hz because 1/s is the same as cycles/sec, which is a Hertz.</span>
5.515km.
With BIDMAS, you would do the addition first and then do the subtraction.
This is an exercise in<u> the General Combined Gas Law</u>.
To start solving this exercise, we obtain the following data:
<h3>
Data:</h3>
- V₁ = 4.00 l
- P₁ = 365 mmHg
- T₁ = 20 °C + 273 = 293 K
- V₂ = 2,80 l
- T₂ = 30 °C + 273 = 303 K
- P₂ = ¿?
We apply the following formula:
- P₁V₁T₂=P₂V₂T₁ ⇒ General formula
Where:
- P₁=Initial pressure
- V₁=Initial volume
- T₂=end temperature
- P₂=end pressure
- T₂=end temperature
- V₁=Initial temperature
We clear for final pressure (P2)

We substitute our data into the formula:



Answer: The new canister pressure is 539.224 mmHg.
<h2>{ Pisces04 }</h2>