Answer:
Fuel efficiency for highway = 114.08 miles/gallon
Fuel efficiency for city = 98.79 miles/gallon
Explanation:
1 gallon = 3.7854 litres
1 mile = 1.6093 km
Let's first convert the efficiency to km/gallon:
48.5 km/litre = (48.5 * 3.7854) km/gallon
48.5 km/litre = 183.5919 km/gallon (highway)
42.0 km/litre = (42.0 * 3.7854) km/gallon
42.0 km/litre = 158.9868 km/gallon (city)
Next, we convert these to miles/gallon:
183.5919 km/gallon = (183.5919 / 1.6093) miles/gallon
183.5919 km/gallon = 114.08 miles/gallon (highway)
158.9868 km/gallon = (158.9868 /1.6093) miles/gallon
158.9868 km/gallon = 98.79 miles/gallon (city)
Answer:

Explanation:
In this problem you need to define the force that acts upon a beam in a 3 point bending problem. I put a picture of the problem taken from Wikipedia:
In this problem the flexural strength is defined with the following formula:

where F is the force applied, L the length between the two rods, b the width of the ceramic block and d it's height.
The force is then defined as:

Answer:
I would say technician A
Explanation:
Definition of voltage- An electromotive force or potential difference expressed in volts.
electromotive force is pressure so technician A would make sense.
Answer:

Explanation:
From the question we are told that:
Voltage 
Power 
Initial Power factor 
Final Power factor 
Generally the equation for Reactive Power is mathematically given by
Q=P(tan \theta_2-tan \theta_1)
Since




And




Therefore



Therefore
The size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging is
