20 mol of NH, can be produce from 30 mol o H2
Answer;
The partial negative charge on oxygen would stick out less and be less able to participate in hydrogen bonding.
Explanation;
Water is a polar molecule because the electrons are not shared equally, they're closer to the oxygen atom than the hydrogen.
-Normally, the water molecule is a bent shape because of the pair of lone electrons - they repulse each other and exert a compression to the hydrogen atoms at a slight 104º angle. It is a bent molecular geometry that results from tetrahedral electron pair geometry.
-The 2 lone electron pairs exerts a little extra repulsion on the two bonding hydrogen atoms to create a slight compression to a 104 degrees bond angle. Therefore, the water molecule is bent molecular geometry because the lone electron pairs.
Thus, If water were a linear molecule like co2, electrostatic interactions between water molecules would be much weaker, then the partial negative charge on oxygen would stick out less and be less able to participate in hydrogen bonding.
The answer is:
B. orbits closer to its parent planet that the most other moons
That is because in Neap Tides, Spring Tide, Lunar Eclipse, Solar Eclipse, and other thing you always see the Moon orbiting the Earth in diagrams.
Answer:
Iodide> Bromide > chloride > flouride
Explanation:
During a nucleophilic substitution reaction, a nucleophilie replaces another in a molecule.
This process may occur via an ionic mechanism (SN1) or via a concerted mechanism (SN2).
In either case, the ease of departure of the leaving group is determined by the nature of the C-X bond. The stronger the C-X bond, the worse the leaving group will be in nucleophilic substitution. The order of strength of C-X bond is F>Cl>Br>I.
Hence, iodine displays the weakest C-X bond strength and it is thus, a very good leaving group in nucleophillic substitution while fluorine displays a very high C-X bond strength hence it is a bad leaving group in nucleophilic substitution.
Therefore, the ease of the use of halide ions as leaving groups follows the trend; Iodide> Bromide > chloride > flouride
I believe your answer would be friction...