We know that when calculating percent yield, we use the equation:

Since the quantities that we are given in the question are equal, we can just directly divide them to find percent yield:

So now we know that the percent yield of the synthesis is 87.27%.
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ
2H₂(g) + O₂(g) ⇄ 2H₂O(l)
Δngas = 0 - (2 +1)
= -3
<h3>
What is Δngas?</h3>
The number of moles of gas that move from the reactant side to the product side is denoted by the symbol ∆n or delta n in this equation.
Once more, n represents the growth in the number of gaseous molecules the equilibrium equation can represent. When there are exactly the same number of gaseous molecules in the system, n = 0, Kp = Kc, and both equilibrium constants are dimensionless.
<h3>
Definition of equilibrium</h3>
When a chemical reaction does not completely transform all reactants into products, equilibrium occurs. Many chemical processes eventually reach a state of balance or dynamic equilibrium where both reactants and products are present.
Learn more about Equilibrium
brainly.com/question/11336012
#SPJ4
Energy were released from the walnut, q = 1,673.6 J
<h3>Equation :</h3>
To find the energy using formula,
q = mcΔt
where,
q is charge
m is mass
c is specific heat of water
Δt is change in temperature
So, given
t₁ = 50°C
t₂ = 60°C
m = 40g
c = 4.184 J/g
Now putting the values known,
We get,
q = mc(t₂ - t₁)
q = 40g x 4.184 J/g x (60 - 50)
q = 167.36 J x 10
q = 1,673.6 J
<h3>What is heat energy?</h3>
Heat is the thermal energy that is transferred when two systems with different surface temperatures come into contact. Heat is denoted by the letters q or Q and is measured in Joules.
To know more about specific heat :
brainly.com/question/11297584
#SPJ9
Answer:
If you're looking at the data as a whole, it would most likely be 100ml.
Explanation: The definition of precise is data close together so 100ml is furthest away from the other recorded numbers