Answer:
Explanation:
I hate these kinds of problems, luckily I can't understand how much the kinetic friction is for this , the words are all mixed around. and don't read well. Maybe this went through a translator program? My suggestion draw the free body diagram. so you can see where the forces are, and how they are acting. getting the free body diagram right.. usually makes these problems pretty straight forward. just do the steps and you get the answer.
In order to determine the angle of the refracted ray, we may apply Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is constant for a given wave when it passes through two different media. Mathematically, this is:
n₁sin(∅₁) = n₂sin(∅₂)
Where n is the refractive index. Substituting the values given into the equation:
1.0003 * sin(20°) = 1.33 * sin(∅)
∅ = 14.91
The angle of the refracted ray is 15°.
Considering the deuterium-tritium fusion reaction with the tritium nucleus at rest: ¹₂H + ¹₃H → ²₄He + ⁰₁n the electric potential energy (in electron volts) at this distance is 17.58MeV
<h3>How is the electric potential energy of deuterium-tritium fusion reaction calculated?</h3>
The reaction is ¹₂H + 1₃H → ²₄He + ⁰₁n
Value of Q = (Mass of ¹₂H + Mass of ¹₃H - Mass of ²₄He- Mass of n) x 931 MeV
Mass of ¹₂H = 2.014102
Mass of ¹₃H = 3.016049
Mass of ²₄He = 4.002603
Mass of n = 1.00867
Therefore Value of Q = [2.014102+3.016049−4.002603−1.00867] × 931 MeV
Therefore Value of Q = 0.01887 × 931 MeV
= 17.58MeV
To learn more about deuterium-tritium fusion reaction, refer
brainly.com/question/9054784
#SPJ4
Answer:
I DONT KNOW WHAT TO DO SORRY
Explanation:
EVEN ME IM NOT SURW