Answer:
1.654 atm.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
P₁ = 1.0 atm, T₁ = 25°C + 273 = 298 K,
P₂ = ??? atm, T₂ = 220°C + 273 = 493 K,
- Applying in the above equation
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
<em>∴ P₂ = (P₁T₂)/(T₁) </em>= (1.0 atm)(493 K)/(298 K) = <em>1.654 atm.</em>
I found another question like this. Someone answered "The best answer to this question is adding a catalyst.
Adding a catalyst will cause the greatest increase in the rate of reaction for this chemical reaction , 8Zn(s) + S8(s) 8ZnS(s). ---> adding a catalyst always affects the rate of a reaction."
Answer:
2,7 m
Explanation:
You can solve this doing an energy balance:
Solving this equation to get h:
Replacing the values and solving brings to 2,7 m
The answer is: lose electrons and form positive ions.
Most metals have strong metallic bond, because of strong electrostatic attractive force between valence electrons (metals usually have low ionization energy and lose electrons easy) and positively charged metal ions.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
For example, magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.