(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
Answer
given,
Pressure on the top wing = 265 m/s
speed of underneath wings = 234 m/s
mass of the airplane = 7.2 × 10³ kg
density of air = 1.29 kg/m³
using Bernoulli's equation




Applying newtons second law
2 Δ P x A - mg = 0


A = 3.53 m²
Answer:
71 % of the earth's surface is covered in water
Answer: Brittle
Explanation:
took the test and I chose Soft, Soft is the wrong answer don't choose it. The CORRECT ANSWER IS BRITTLE