(1.00 atm) (0.1156 L) = (n) (0.08206 L atm / mol K) (273 K) I hoped that helped
<span>As the temperature goes down, the chaotic motion (velocity) of atoms start decreasing. If the temperature hits the absolute zero (which, in reality, is impossible to achieve), the atoms of the body would freeze, making the body still and stiff. One thing to note here is that the atoms do not get destroyed when the temperature reaches the absolute zero. That is the reason why the object can still be seen when it is at absolute zero.</span>
Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
Answer:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Explanation:
For this case the figure attached shows the illustration for the problem
We have an inverse square law with distance for the force, so then the force of gravity between Earth and the spaceship is lower when the spaceship is far away from Earth.
Th formula is given by:

Where G is a constant 
represent the mass for the earth
represent the mass for the spaceship
represent the radius between the earth and the spaceship
For this reason when the distance between the Earth and the Spaceship increases the Force of gravity needs to decrease since are inversely proportional the force and the radius, and for the other case when the Earth and the spaceship are near then the radius decrease and the Force increase.
Based on this case we can create the following rank:

Where
represent the force for each of the 5 cases
presented on the figure attached.