1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
5

What is another word that can be used to describe the position of the object?

Physics
1 answer:
steposvetlana [31]3 years ago
6 0

where the object is located

You might be interested in
Notice that in each conversion factor the numerator equals the denominator when units are taken into account. A common error in
navik [9.2K]

Answer:

he factor for the temporal part 1.296 107 s² = h²

 m / s² = 12960 km / h²

Explanation:

This is a unit conversion exercise.

In the unit conversion, the size of the object is not changed, only the value with respect to which it is measured is changed, for this reason in the conversion the amount that is in parentheses must be worth one.

In this case, it is requested to convert a measure km/h²

Unfortunately, it is not clearly indicated what measure it is, but the most used unit in physics is   m / s² , which is a measure of acceleration. Let's cut this down

the factor for the distance is 1000 m = 1 km

the factor for time is 3600 s = 1 h

let's make the conversion

        m / s² (1km / 1000 m) (3600 s / 1h)²

note that as time is squared the conversion factor is also squared

        m / s² = 12960 km / h²

the factor for the temporal part 1.29 107 s² = h²

6 0
3 years ago
A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c
saw5 [17]

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

8 0
3 years ago
ANSWER NOW!!!! IF CAN
liberstina [14]
Is this practically possible? How can a 100kg man fly? Hahaha
3 0
3 years ago
A solenoidal coil with 26 turns of wire is wound tightly around another coil with 350 turns. The inner solenoid is 20.0 cm long
noname [10]

Answer:

Part a)

\phi = 2.76 \times 10^{-7} T m^2

Part B)

M = 5.52 \times 10^{-5} H

Part C)

EMF = 0.1 V/s

Explanation:

Part a)

Magnetic field due to a long ideal solenoid is given by

B = \mu_0 n i

n = number of turns per unit length

n = \frac{N}{L}

n = \frac{350}{0.20}

n = 1750 turn/m

now we know that magnetic field due to solenoid is

B = (4\pi \times 10^{-7})(1750)(0.100)

B = 2.2 \times 10^{-4} T

Now magnetic flux due to this magnetic field is given by

\phi = B.A

\phi = (2.2 \times 10^{-4})(\pi r^2)

\phi = (2.2 \times 10^{-4})(\pi(0.02)^2)

\phi = 2.76 \times 10^{-7} T m^2

Part B)

Now for mutual inductance we know that

\phi_{total} = M i

\phi_{total} = N\phi

\phi_{total} = 20(2.76 \times 10^{-4})

\phi_{total} = 5.52 \times 10^{-6}

now we have

M = \frac{5.52 \times 10^{-6}}{0.100}

M = 5.52 \times 10^{-5} H

Part C)

As we know that induced EMF is given as

EMF = M \frac{di}{dt}

EMF = 5.52 \times 10^{-5} (1800)

EMF = 0.1 V/s

3 0
4 years ago
What is a random motion ​
Leokris [45]

Answer:

Random Motion is a motion in which an object didn't go in a straight manner, for ex: zig zag lines, curved, etc.

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • How could you increase the potential energy of the roller coaster shown below?
    10·2 answers
  • At one particular moment, a 15.0 kg toboggan is moving over a horizontal surface of snow at 4.40 m/s. After 7.50 s have elapsed,
    11·1 answer
  • Kepler's second law: as a planet moves around its orbit, it sweeps out ______areas in ______ times.
    5·1 answer
  • An ultrasonic ruler, such as the one discussed in Example 4 in Section 16.6, displays the distance between the ruler and an obje
    11·1 answer
  • After using a thermometer where should it be placed
    11·1 answer
  • Find the percentage of the total work lost to friction if 28.7 J of work is put into pushing a block up a ramp resulting in 14.2
    8·1 answer
  • In order to ride a bike up a hill with increasing speed—
    9·1 answer
  • Aaron turns to walk back to the house. 4 m up the driveway, he
    5·1 answer
  • a student that weighs 436 n is standing on a scale in an elevator and notices that the scale reads 498 n. from this information,
    13·1 answer
  • Determine the momentum of a system of the two objects. One object, m1, has a mass of 3.5 kg and a velocity of 20 m/s towards the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!