Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
Applied forces/or unbalanced:i hope that helps you
I think the correct answer would be the last option. The ocean zone which has the lowest water pressure would be the uppermost zone which is the Epipelagic zone. This zone is also called as the euphotic zone or the sunlit zone. It is the region which receives the most sunlight in order to allow photosynthesis.
Answer:
b. ΔH and ΔS are negative at all temperatures .
Explanation:
During the process of condensation ,
The gaseous state convert to liquid state ,
Hence , the entropy of the system reduces , i.e. , the randomness decreases .
And the value for entropy is negative ,
hence ,
Δ S = negative ,
Δ H = negative ,
Since ,
The heat is releasing from system .
hence , the most appropriate option will be ΔH and ΔS are negative at all temperatures .