Answer:
Initial pressure = 6 atm. Work = 0.144 J
Explanation:
You need to know the equation P1*V1=P2*V2, where P1 is the initial pressure, V1 is the initial volume, and P2 and V2 are the final pressure and volume respectively. So you can rearrange the terms and find that (1.2*0.05)/(0.01) = initial pressure = 6 atm. The work done by the system can be obtained calculating the are under the curve, so it is 0.144J
Before the skydiver opens the parachute, his velocity would be increasing greatly as much as 9.8 m/s². Opening the parachute would increase the surface area to which air may cause resistance. The skydiver then reaches his terminal velocity.
The central force acting on the electron as it revolves in a circular orbit is
.
The given parameters;
- <em>speed of electron, v = 2.2 x 10⁶ m/s</em>
- <em>radius of the circle, r = 4.63 x 10⁻¹¹ m</em>
<em />
The central force acting on the electron as it revolves in a circular orbit is calculated as follows;

where;
is mass of electron = 9.11 x 10⁻³¹ kg

Thus, the central force acting on the electron as it revolves in a circular orbit is
.
Learn more about centripetal force here:brainly.com/question/20905151
Answer:
B
Explanation:
F = ma , a = F/m
a1 = F/10 and a2 = F/4
Since Force is constant, a2 will we greater than a1